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Abstract

We analyze the contribution of rising longevity to the increase in wealth inequality

in the U.S. over the past seventy years. To do so, we construct an overlapping gen-

erations (OLG) model with multiple sources of inequality, carefully calibrated to the

data. Our key finding is that improvements in old-age longevity have a substantial

impact on wealth inequality, accounting for approximately half the effect of income

inequality, which has been the focus of much of the existing literature. In contrast,

the impact of tax changes is relatively minor. The contribution of rising longevity

is expected to continue driving wealth inequality upward in the coming decades.
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1 Introduction

We study the role of longevity and rising income inequality in the growth of wealth

inequality in the United States. A large body of literature documents a rise in income

inequality (e.g. Chetty et al., 2017; Guvenen et al., 2022) and attributes growing wealth

inequality in the U.S. to rising income inequality (e.g. Saez and Zucman, 2016; Piketty

et al., 2018). Hubmer et al. (2021) argue that continuing with the 1970s redistribution in

the tax system into the next decades could have prevented the rise in wealth inequality

even in the presence of high income inequality.

At the same time, the U.S. experienced a colossal increase in life expectancy, especially

in old-age longevity. Between 1970 and 2015, life expectancy at 65 has improved from

slightly above 14 years to nearly 19 years. Through the lens of any standard overlapping

generations model, this rise in longevity can translate to an increase in wealth inequality

due to two mechanisms. First, since individuals expect to live longer, a behavioral effect

involves higher wealth accumulation at the peak of the life cycle for each subsequent birth

cohort.Second, a composition effect appears due to a rising share of individuals close to

the peak of wealth accumulation. In this paper, we quantify the role of demographics in

rising wealth inequality and juxtapose it with income inequality.

The two drivers of wealth inequality – longevity and income inequality – yield markedly

different policy recommendations. If driven by longevity, the rise in wealth inequality

merely indicates that households internalize the changing demographic trends in their

lifetime optimization. If caused by the rise of income inequality, it has a number of

implications (such as an amplification of labor market processes to old age poverty) that

necessitate policy interventions. Hence, emerges policy relevance of our study.

Our main contribution is demonstrating that demographic factors significantly influ-

ence wealth inequality. We build a general equilibrium overlapping generations model

that replicates key trends in the data, including a decline in the wealth Gini coefficient

until the late 1970s, followed by a 5-point increase. Individuals in the model are ex-ante

heterogeneous, differing by education, which affects their mortality risk and labor income.

They face uncertainty throughout life due to income risk, discount rate shocks, and risky

returns on savings.

The model is carefully calibrated to U.S. data. It replicates the 1930s economy as

the initial steady state and tracks wealth inequality dynamics during the transition to
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a new steady state. We model changes in longevity using survival probabilities aligned

with demographic data and projections. We allow for multiple sources of changes in the

income distribution: time-varying shares of college-educated individuals, skill premia, and

evolving income risk for subsequent cohorts. Redistribution mechanisms consistent with

the data, including varying tax rates and income tax progressivity, are also incorporated.

We use this model to perform counterfactual simulations by setting mortality risk,

income mechanisms, and taxes to their 1950s levels. We show that the impact of longevity

is quantitatively substantial, with the size of the effect roughly half as large as that of

the observed changes in income inequality. Our findings also reveal that the behavioral

channel, driven by consumption-savings responses to longer lifespans, plays a larger role

than changes in demographic structure. In contrast, the contribution of the tax system is

relatively minor. Finally, using demographic projections, we examine the future trajectory

of wealth inequality and find that current forces will continue to amplify inequality for

another half-century.

The related literature We build on a rich tradition of quantitative macroeconomic

models (originating from Bewley, 1977). The early models faced challenges in replicating

the degree of wealth inequality observed in the data, even after accounting for idiosyncratic

income shocks.1 Since then, the literature has branched into three strands reflecting the

role of different forms of heterogeneity in shaping wealth inequality: (i) heterogeneous

incomes, (ii) heterogeneous savings, and (iii) heterogeneous returns on assets.

For heterogeneous incomes, particularly the thickness of the upper tail plays a central

role. Castaneda et al. (2003); Benhabib et al. (2019); Gabaix et al. (2016) demonstrate

that persistent and skewed earnings processes (also known as“superstars”) generate wealth

distributions that resemble empirical patterns. Taxing “super-luck” improves welfare and

optimal taxation of “superstars” reduces wealth concentration due to reduced income con-

centration (Kindermann and Krueger, 2022). An alternative approach shows that even if

the increase in income inequality is transitory, the effects on wealth inequality are partially

persistent (Lippi and Perri, 2023). Kaymak and Poschke (2016) attribute over half of the

post-1960 rise in U.S. wealth inequality to increasing earnings inequality. Redistribution

through taxation plays an important role as well. The decline in redistribution can ex-

1For example, Aiyagari (1994) calibrated his model to match PSID data and produced a wealth Gini
coefficient of 40, that is roughly a half the empirical estimate of 80.
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plain the evolution of the top income shares (Aoki and Nirei, 2017) and wealth inequality

(Hubmer et al., 2021).

Another important mechanism is the heterogeneity in savings rates. Higher savings

rates are observed among the wealthy (Straub, 2019).2 De Nardi (2004) and Cagetti and

De Nardi (2006) show that the variation of bequests is instrumental in replicating key

features of observed wealth distributions.

For heterogeneity of returns on assets, the literature offers two distinct channels. First,

a strand of research shows that rates of return generally increase with wealth (see Kuhn

et al., 2020; Hubmer et al., 2021). Second, the literature emphasizes the theoretical

and quantitative role of the dispersion of the returns (see Benhabib et al., 2011, 2019;

Fagereng et al., 2020; Bach et al., 2020; Gomez, 2024). Gomez and Gouin-Bonenfant

(2024) integrate both of these channels, demonstrating that they jointly contribute to

increasing inequality at the top of the wealth distribution.

The role of demographics is increasingly being recognized in macroeconomic models.3

However, the role of demographics in wealth inequality is largely unexplored. Krueger

and Ludwig (2007) use an OLG model to compare wealth inequality in the U.S., EU, and

OECD under different longevity and immigration scenarios but do not isolate the effect

of rising longevity. Many other studies on wealth inequality rely on infinitely lived agent

models (e.g. Aoki and Nirei, 2017; Hubmer et al., 2021),4 or focus on steady states and

simulate transition paths for policies (e.g. Kindermann and Krueger, 2022). To the best of

our knowledge, this is the first study to systematically quantify the role of rising longevity

in explaining the dynamics of wealth inequality.

In comparison to the existing literature, our paper offers several novelties. First, we

focus explicitly on the effects of rising longevity on wealth inequality. Using a rich OLG

model carefully calibrated to data, we replicate the observed dynamics of wealth inequality,

2Empirical evidence is mixed: Fagereng et al. (2019) show that net savings rates are relatively constant
across the wealth distribution in Norway. Behavioral heterogeneity was used to replicate savings rate
heterogeneity in structural models. The extensive literature explores heterogeneity in preferences (e.g.
Epper et al., 2020) as well as financial literacy (e.g. Lusardi et al., 2017).

3The demographic transition has been a key driver of the decline in observed (Eggertsson et al., 2019)
and natural (Bielecki et al., 2020) interest rates in the recent decades. In a deterministic OLG setup,
Gagnon et al. (2021) demonstrate that demographics contributed to permanent declines in real GDP
growth, aggregate investment rates, and safe asset yields in the US. In a stochastic OLG setup, Auclert
et al. (2021) predict that aging will raise wealth-to-GDP ratios, lower asset returns, and exacerbate global
imbalances.

4Kaymak and Poschke (2016) use a simplified two-stage life cycle model with working and retirement
phases.
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which allows us to isolate the role of demographics by removing time variation in selected

model inputs. Second, we account for multiple potential channels of spillover from income

inequality to wealth inequality. Our model incorporates numerous sources of idiosyncratic

shocks. We can thus compare the strength of demographics with other channels, such

as income inequality and taxation. Last but not least, we study wealth inequality for

the “bottom 99%”.5 In fact, the rise of wealth inequality irrespective of the wealthiest

percentile of the population was large and demographic factors have played an important

role in this process. Demographics likely have less impact on top wealth inequality. Given

the focus of our study, our aim is to analyze the broader wealth distribution rather than

its extremes. For this reason, we use the Gini coefficient as our primary measure of wealth

inequality.

2 Model

We construct a general equilibrium OLG model with heterogeneous households. Agents

have perfect foresight with respect to aggregate variables. We describe the household

sector below. The rest of the model is relegated to the Online Appendix A.

2.1 Population dynamics

Households are finitely lived, their age is denoted by j ∈ {1, . . . , J}. Let s ∈ {L,H} be

the level of education of a household, with s = L being less than college, and s = H being

some college education or more. The size of the cohort j in period t with educational level

s is Nj,t,s and Nj,t denotes the total size of the population of age j at time t. The size of

each new cohort N1,t and the fractions by education status s are determined exogenously.

The s-specific conditional probability of survival from age j to j + 1 in period t is ψs,j,t.

Finally, the total population is Nt =
∑J

j=1Nj,t.

The size of cohort j in period t is Nj,t =
∑

s∈{L,H}Ns,j,t, with Ns,j,t denoting the size

of population with education level s of age j at time t. The size of each new cohort of

education s, Ns,1,t, is determined exogenously. Given education level, specific conditional

probability of survival from age j to age j + 1 in period t is ψs,j,t the population evolves

according to Ns,j+1,t+1 = ψs,j,tNs,j,t.

5An interesting evidence on wealth inequality dynamics from the Forbes 400 list, is provided by Gomez
(2023).
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2.2 Budget constraint

Let j̄ denote the retirement age. Households with j < j̄ face the wage rate wtes,j,t, where

wt denotes wage per unit of efficiency labor (marginal product of aggregate labor), es,j,t

represents idiosyncratic wage variation due to the education level s, age j, and a random

component ω which follows a first-order Markov chain with states ωs,j,t and transition

matrix πω
s,j,t (ωs,j+1,t+1 | ωs,j,t).

6 The details of the es,j,t are discussed later in conjunction

with equation (3). Households with j ≥ j̄ have es,j,t = 0.

Labor income of a working household is subject to a social security contribution at

the rate τss,t. The base of the labor income tax is thus ys,j,t = (1− τss,t)wtes,j,tℓs,j,t, where

ℓs,j,t is the labor supply. Households pay progressive labor income tax Tt (ys,j,t, ȳt) given

by Tt (ys,j,t, ȳt) = ys,j,t− (1− τℓ,t)
(

ys,j,t
ȳt

)1−λt

ȳt, where the elasticity of after-tax to pre-tax

income equals 1− λt, and τℓ,t determines the average tax rate. The average labor income

tax base in period t is denoted by ȳt.
7

Let as,j,t denote the holdings of assets at the beginning of the period t. Asset markets

are incomplete, households can only self-insure against fluctuations in idiosyncratic labor

productivity by saving in a risky asset that pays a gross after-tax return 1+r̃t+ϵ
r
s,j,t, where

r̃t is a deterministic aggregate component and ϵrs,j,t is an i.i.d. idiosyncratic return shock,

ϵrs,j,t ∼ N (0, σ2
r). Assets holdings are subject to a borrowing constraint, as,j+1,t+1 ≥ 0.

Households’ resources consist of after-tax labor income ys,j,t − Tt (ys,j,t, ȳt), current

wealth along with the interest accrued
(
1 + r̃t + ϵrs,j,t

)
as,j,t, pension benefits bs,j,t (de-

scribed in Appendix A), and of accidental bequests Γs,j,t. The bequests are evenly dis-

tributed between all the surviving households of the same education level within a birth

cohort. Households use these resources to purchase consumption goods cs,j,t and accumu-

late wealth, and τc,t denotes the consumption tax rate. The budget constraint is thus:

as,j+1,t+1 + (1 + τc,t) cs,j,t = ys,j,t − Tt (ys,j,t, ȳt) +
(
1 + r̃t + ϵrs,j,t

)
as,j,t + bs,j,t + Γs,j,t. (1)

2.3 Social security

We replicate the main features of the current U.S. pension system: the average index

of monthly wages accumulation (AIME) and the cap imposed by Old Age, Survivors,

6Note that states and the transition matrix depend on the education level s, age j, and time period t.
7The after-tax labor income can be thus expressed as a weighted geometric mean (1− τℓ,t) y

1−λt
s,j,t ȳλt

t .
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and Disability Insurance (OASDI). Old age benefits bs,j,t at retirement age j̄ depend on

the replacement rate pj̄,t, benefit drawing rights fs,j̄,t which reflect AIME accumulation,

and average earnings in the economy wtetℓt. A time-varying scaling factor ϱj̄,t adjusts

the generosity of benefits to maintain a data-consistent ratio of benefits to GDP. The

detailed formulae bs,j,t, pj̄,t and fs,j̄,t as well as rationale for ϱj̄,t are relegated to the

Online Appendix A.1

2.4 Household problem

Households discount future with δs,j,t, which follows a first-order Markov chain, and the

conditional survival probability ψs,j,t. The individual state variables zs,j,t of the household

with education level s and age j in period t are: the level of assets as,j,t, the pension entitle-

ments fs,j,t, the level of individual labor productivity ωs,j,t, the level of individual discount

factor δs,j,t, and the rate of return shock ϵrs,j,t; zs,j,t =
(
as,j,t, fs,j,t, ωs,j,t, δs,j,t, ϵ

r
s,j,t

)
∈ Ω.

We assume that households of age j = 1 enter with no assets, as,1,t = 0.

The optimization problem of the household in a recursive form is:

Vs,j,t (zs,j,t) = max
(cs,j,t,ℓs,j,t,fs,j+1,t+1,as,j+1,t+1)

1

1− θ

[
cϕs,j,t (1− ℓs,j,t)

1−ϕ
]1−θ

+ψs,j,tδs,j,tE [Vs,j+1,t+1 (zs,j+1,t+1) |zs,j,t] , (2)

subject to the budget constraint in equation (1), formulas for pensions in equations (A.1)

and (A.2), and the borrowing constraint as,j+1,t+1 ≥ 0, with θ and ϕ determining relative

risk aversion and leisure preference, respectively.

2.5 Production function

A representative firm uses capital Kt and labor Lt to produce final output Yt according to

a Cobb-Douglas production function Yt = Kαt
t (AtLt)

1−αt , with labor augmenting techno-

logical progress At+1/At = 1 + γAt+1. Note that both capital income share in total output

αt and the depreciation rate of capital dt are time varying. Since our production sector is

standard, we relegate the description to the Online Appendix A.2.
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2.6 Government and Model Closure

Additionally, our model features the government that collects capital income taxes τk,t,

labor income taxes Tt(ys,j,t(zs,j,t), ȳt), and consumption taxes τc,t. The total taxes collected

Tt are used to finance government expendituresGt and subsidize the social security system,

with the subsidy being denoted as St. Thus, Gt+St = Tt. More details on government and

market clearing conditions with the definition of equilibrium are relegated to the Online

Appendices A.3 and A.4, respectively.

3 Calibration

One period in the model corresponds to five years. In all experiments, we study the

transition from the initial steady state in the year 1935 to the final steady state in the

distant future. The model is calibrated to match dynamic features of the U.S. economy.

This implies that many model parameters vary along the transition path, in line with

the evolution of real world analogs. Whenever available, we rely on observational data

or publicly available forecasts. In a few cases, parametrization of the early years of our

model requires extrapolation of the time series to the past and in all instances we also

extrapolate the trends in the data to the future years, to obtain a sufficiently distant final

steady state for simulations. Below we describe the data sources and target values (if

constant). The details for extrapolating the observational data are discussed in Online

Appendix B.

3.1 Demographics

We use population data from the Centers for Disease Control and Prevention (CDC). The

five-year averages for births and survival probabilities are provided by the United Nations

Population database. This data covers historical births and survival probabilities as well

as provides a demographic forecast until 2100. We assume that after that year the birth

rate continues at 0.06% per year, and survival probabilities stabilize at their 2100 levels.

We calculate the share of households with at least some college (s = H in our model)

for each entry cohort using the individual level data from the U.S. Census and American

Community Survey. The path of these shares in the data, which we use as inputs for our

model, is shown in Figure B.1 of Online Appendix B.1. The survival probabilities in the

8



model, ψs,j,t, depend on the level of education. To capture this heterogeneity, we use U.S.

death certificate data from Case and Deaton (2021) that include survival probabilities

by cohort, age, and college attainment. The details of processing the data as well as an

extrapolation to the periods not covered by the data are described in Online Appendix

B.1.

3.2 Income dynamics

We assume an idiosyncratic component of wages, es,j,t, is given by

ln es,j,t = βs,t + ζs,j + ωs,j,t, (3)

where βs,t is a time-varying component common to all households with the same education

level s (college premium), ζs,j is a type-specific deterministic age profile and ωs,j,t follows

a first-order Markov chain with states ωs,j,t and transition matrix πω
s,j,t (ωs,j+1,t+1 | ωs,j,t).

We normalize βL,t = 1 and use the (log) college wage premium series from Autor et al.

(2020) to construct our measure of βH,t and assume it constant after 2020 (see Figure B.3).

We estimate the parameters of income processes using the 1970-2019 waves of the Panel

Study of Income Dynamics (PSID). We apply Deaton and Paxson (2000) decomposition

to obtain deterministic age profiles ζs,j, adjusting for cohort and time effects (see Online

Appendix B.2.3). We use residuals from this decomposition to estimate a first-order

auto-regressive income process:

ω′ = ϱω,sω + ϵω, ϵω ∼ N
(
0, σ2

ω,s,j,t

)
. (4)

We allow for different auto-correlation parameters ϱω,s for s ∈ {L,H} and for cohort-

specific variances σ2
ω,s,j,t. The point estimates are ϱω,L = 0.980 and ϱω,H = 0.985. We

show our estimates of variances in Figure B.5. We adjust estimates of ϱω,s, σ
2
ω,s,j,t to

reflect the fact that one period in the model corresponds to five years and to have the

unconditional expected value E [exp(ω)] = 1 for all cohorts. We then approximate each

resulting AR(1) process with a 5-state Markov chain by the Rouwenhorst method.

We augment the 5-state Markov chains with an additional 6th state to account for

“superstars”. This state can be reached only from the 5th state and upon exiting it

the household moves to the 3rd state (corresponding to the average productivity for its
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education level). We calibrate the probability of moving to and falling from the 6th state

to match the share of “superstars” in the PSID data, see Online Appendix B.2.3.

3.3 Idiosyncratic returns

Returns on assets in our model consist of two parts: a common aggregate component

r̃t determined by the marginal product of capital and taxes, and an i.i.d. component

ϵs,r,t with mean zero. To calibrate the standard deviation of ϵrs,j,t, we follow Hubmer et al.

(2021). They consider four classes of assets: a risk-free asset, public equity, private equity,

and housing, and calculate standard deviation of annual returns by asset class and wealth

group (percentiles of wealth distribution). Next, they adopt portfolio weights on these four

classes of assets by wealth group from Bach et al. (2020). This allows them to calculate

standard deviation of returns on assets by wealth group, σr,group. We take their numbers

and calculate average shares of aggregate wealth held by these wealth groups between

1989 and 2022, ϖgroup. We provide more details in Online Appendix B.3. The variance of

five-year returns in our model is thus σ2
r = 5

∑
groupϖ

2
group ·σ2

r,group. The implied standard

deviation σr is 0.123.

3.4 Macroeconomic parameters

Production function We use Penn World Tables 10, published by the Groningen Growth

and Development Center (GGDC), to calibrate all the time-varying parameters of the

production function. The data for depreciation were adjusted to five-year periods. We

set αt to match labor share in the U.S. in 1950-2019. Labor-augmenting technological

progress taken from GGDC is adjusted for time-varying labor share as well as for the

changing composition of the labor force (increased share of individuals with s = H). The

details of processing data and extrapolation are relegated to Online Appendix B.4.

The government Tax rates are calibrated using Mendoza et al. (1994) approach. The

rates which match the shares of revenues from capital income tax, labor income tax, and

consumption tax observed in the data are obtained from McDaniel (2007). To calibrate

labor income tax progressivity, we follow Barro and Sahasakul (1983) and Mertens and

Montiel Olea (2018). The government expenditures are determined as a residual to satisfy

the government budget constraint. The details are reported in Online Appendix B.5.
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Social security To set the effective rate of social security contribution τss,t we use data on

social security contributions relative to GDP from the OECD. τss,t determines the ratio of

social security contributions to labor income, and the ratio of labor income to GDP (labor

share) is pinned down by 1 − αt. We set retirement age j̄ = 10 to reflect the effective

retirement age of 66. The parameters used to calculate pensions in the social security

system are taken from McGrattan and Prescott (2017) and remain constant over time.

We set parameters controlling the replacement rate pJ̄ ,t to match the ratio of pensions to

GDP. The details are provided in Online Appendix B.6.

3.5 Preferences

We calibrate the preference for consumption parameter ϕ to match the observed share of

hours worked in the economy, which is 33% on average. The relative risk aversion θ is set

to 1.5 (in line with Hubmer et al., 2021; Kindermann and Krueger, 2022). The discount

factor δs,j,t follows a first-order Markov chain with four states. States 1 to 3 and transition

probabilities between them are obtained by discretization of an AR(1) process

δ′ = (1− ϱδ) δ̄ + ϱδδ + ϵδ, ϵδ ∼ N
(
0, σ2

δ

)
,

with auto-correlation ϱδ = 0.9925 and standard deviation σδ = 0.0065 corresponding to

values reported in Hubmer et al. (2021).8 The fourth state is δs,j,t = 0 and the probability

of moving to it from any state is 0.05, calibrated to match the share of hand-to-mouth

agents in the data.9 Once in this state, agents draw δs,j,t from its stationary distribution.

This means that they can stay in this state for consecutive periods. Similarly, agents with

8Discount factor shocks serve as a mechanism to introduce heterogeneity in old-age saving behavior,
functioning similarly to a ”warm glow” bequest motive or health shocks. The value of ϱδ implies that, on
average, half of the gap between δ and δ̄ closes within one generation. This level of persistence mimics a
structure where altruism is present, with parents caring about the utility of their children. We deliberately
chose not to calibrate σδ to exactly match the wealth Gini observed in the data, opting instead for the
value reported by Hubmer et al. (2021). One reason for this choice is our focus on the“bottom 99%”of the
wealth distribution, as we believe demographic processes are less relevant for the top 1%. Using discount
factor shocks to match the wealth Gini exactly would risk overemphasizing a factor that may not fully
reflect real-world dynamics. This consideration is especially important because our model excludes certain
features—such as entrepreneurship or intergenerational transfers—that are recognized in the literature as
important for explaining wealth inequality. On the other hand, excluding discount factor shocks entirely
would leave the model with fewer sources of inequality, potentially exaggerating the role of demographics.
A sensitivity analysis in Online Appendix F.3 confirms this conjecture.

9Zeldes (1989) reports that the share of hand-to-mouth agents (households with sufficiently low net
worth) was approximately 29% in the earlier waves of the PSID, while Aguiar et al. (2024) reports a
share of 23.3% in more recent waves. In our model, the target is an average share of agents aged 25–64
with zero assets, set at 27.5% over the period 1980–2020.
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j = 1 draw δs,j,t from the stationary distribution. We set δ̄ to match the pre-tax rate of

return on capital of 8% in the initial steady state. The resulting value is 1.01.

4 Model data fit

We begin by evaluating the ability of our model to replicate observed trends in wealth

inequality. Our primary focus is on the impact of demographic factors. Since these factors

are unlikely to significantly affect the wealth share of the top 1%, we rely on the Gini

coefficient as our inequality measure. Figure 1 demonstrates the comparison of model

simulations with the data. It shows changes in the Gini coefficient over time, normalized

to 1950. The bars represent observed changes from the data, while the solid line reflects

the corresponding model simulations.

Figure 1: Evolution of wealth inequality: model vs. data
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Note: We use household wealth data, measured as net assets, from the extended sample of the Survey
of Consumer Finances (SCF, Kuhn et al., 2020). Observations with negative assets are excluded, as the
model imposes a non-negativity constraint on asset accumulation. Population weights are applied to the
SCF data, and observations are grouped into five-year bins. In the model, probability mass is similarly
applied as weights. The black line represents the change in the wealth Gini coefficient in the model
(measured in percentage points relative to 1950), while the gray bars show the change in the wealth Gini
coefficient derived from the SCF data.

From 1950 to 1975, the wealth Gini coefficient in the data declines by approximately

three points, a trend that the model successfully reproduces. Between 1975 and 2015, the

wealth Gini coefficient in the data increases by eight points, with the model explaining

more than half of this rise. Overall, the model effectively captures both the reduction in

inequality prior to 1975 and its subsequent growth.

12



Most macroeconomic parameters in the model are directly sourced from observational

data. However, the model endogenously determines the interest rate, hours worked, the

size of social security. We can also compare the ratio of bequests to GDP. For the interest

rate, our baseline simulation captures the major trends and some fluctuations observed

over time. The data show a decline in interest rates from approximately 8% in 1950 to

just over 7% in 2015. In our model, this decline is slightly more pronounced, with the

rate falling to just below 7%, see Figure D.1 in Online Appendix D.10

Our baseline simulation matches the long-run behavior of average hours worked per

capita observed in the data. In particular, consistent with the evidence for the U.S in

Boppart and Krusell (2020), average hours in the model do not exhibit any long-run

trend. The model generates slightly larger fluctuations in hours than in the data and

cannot reproduce behavior of hours inflicted by the Great Recession, see Figure D.2 in

Online Appendix D.

The model replicates both the levels and the time variation of the GDP share of

pension benefit expenditures very well. Additionally, the future path of benefits implied

by our model aligns closely with projections from the Congressional Budget Office. In

Figure D.3 of Online Appendix D, we plot the time evolution of the model’s pension

benefit expenditures against data from the U.S. Social Security Administration. Finally,

the average ratio of bequests to GDP in the model is slightly above 5%; further details

are provided in Online Appendix D.

Futher, we examine the Gini coefficient and Lorenz curves for income generated by

the model and compare them with observational data from the PSID, aggregated by

decades for the 1970s, 1980s, 1990s, 2000s, and 2010s. The model closely replicates the

observed income distribution, despite income inequality not being a direct target during

calibration. While income shocks and life cycle patterns were estimated from PSID data,

additional features of the income process, such as the college premium and college shares,

were derived from external sources,11 see Figure D.4 in the Online Appendix D.

Finally, we compare the composition of changes in wealth inequality as represented

10Our model does not include government debt to avoid the arbitrary ad hoc assumptions about its
evolution in counterfactual scenarios. Consequently, the increased savings in our model result in a more
pronounced ”savings glut” mechanism compared to the data.

11Note that we estimate a process for idiosyncratic productivity shocks, not for the entire labor income.
Given this process and aggregate variables, labor supply is chosen optimally by the agents within the
model. The ability of the model to replicate the observed income distribution means that the model can
generate comovement between hourly wages and hours worked consistent with the data.
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by the model with the data. Using the extended SCF sample provided by Kuhn et al.

(2020), we decompose a Generalized Entropy measure of inequality into between-cohort

and within-cohort components. Although the data show larger magnitudes than the

model, the patterns produced by the model align remarkably well with empirical regular-

ities, see Figure D.5 in the Online Appendix D.

5 Results

In this section, we show the results of our study. We start by describing the contribution

of rising longevity to wealth inequality since 1950 and compare it with other important

factors discussed in the literature, such as taxes and incomes.

5.1 Rising longevity and evolution of wealth inequality

We begin by examining the impact of rising longevity on wealth inequality. One significant

driver is the composition (structural) effect, which arises because the distribution of assets

across age groups typically follows a hump-shaped pattern. In any life-cycle economy, even

if agents are identical in all aspects except age, the Gini coefficient will exceed zero. As

population ages, the share of younger individuals with fewer assets declines, while the

proportion of older individuals nearing retirement, who hold more assets, increases. This

shift affects the Gini coefficient, though the magnitude and direction of its impact depend

on quantitative factors.

Another critical factor is the behavioral effect, which stems from increasing life ex-

pectancy. As individuals plan for longer retirement periods, they adjust their savings

behavior, accumulating more assets over their lifetimes. This increased saving inten-

sifies the disparity between younger individuals and those nearing retirement, thereby

contributing to rising wealth inequality. Evidence supporting this effect is provided by

Bauluz and Meyer (2024).
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Figure 2: Baseline vs counterfactual scenario of constant longevity

Note: The black line shows the level of the wealth Gini coefficient in the baseline model. The violet line
illustrates the wealth Gini coefficient from a counterfactual simulation where mortality rates, used both
in calculating the population structure and in the consumer problem, are held constant at their 1955
levels, while all other aspects align with the baseline simulation.

To quantify these effects, we simulate a counterfactual scenario in which mortality

rates are fixed at their 1955 levels and compare it to the baseline scenario, where mortality

rates evolve as observed historically. The initial conditions are identical, given by the same

initial steady state at t = 0 (corresponding to the year 1935). The respective paths of

mortality rates in the baseline and counterfactual scenarios are revealed at t = 1 (year

1940). The resulting population structures for both scenarios are presented in Figure C.1

in Online Appendix C. Figure 2 shows the evolution of the wealth Gini coefficient under

these two scenarios.

In the absence of changes in longevity, the Gini coefficient declines by 0.9 points more

between 1950 and 1975 than in the baseline scenario, as illustrated by the difference

between the two lines in Figure 2. This suggests that rising longevity during this period

increased wealth inequality by nearly one point. After 1975, rising longevity continues to

drive inequality upward, with their cumulative impact reaching approximately 1.5 points

by 2015 and 2050.

To disentangle the relative contributions of demographic factors to wealth inequality,

we construct a bar graph in Figure 3 (scenario [S1]Longevity:1955). This analysis is based

on a comparison between the baseline scenario and a counterfactual scenario with fixed
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mortality rates, both depicted in Figure 2. In this context, Gb
t represents the wealth

Gini coefficient from the baseline model, while Gc
t denotes the coefficient from the coun-

terfactual scenario. The differences between the two scenarios for a given period t are

calculated as ∆t = Gb
t −Gc

t , and these differences are visualized as bars in Figure 3 for

t ∈ {1975, 2015, and2050} are 0.9, 1.4, and 1.45 Gini points, respectively (corresponding

to the differences between the two lines in Figure 2). A positive bar value indicate that a

factor increases wealth inequality, while a negative values reflects mitigating effect.

Figure 3: Impact of rising longevity on wealth inequality (in Gini points)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Gini points

2050

2015

1975

[S1]Longevity:1955 [S1a]ExpectedLongevity:1955

[S1b]PopStructure:1955

Note: The bars depict the differences in the wealth Gini coefficient for a given year between the baseline
scenario and the respective counterfactual scenarios, as defined by the formula ∆t = Gb

t −Gc
t . A positive

value indicates that a given factor contributed to the increase of the Gini coefficient, while a negative
value indicates a decrease. The counterfactual scenarios are defined as follows. [S1]Longevity:1955 This
scenario fixes mortality rates at their 1955 levels for both population structure and the consumer problem,
while all other aspects remain as in the full model. [S1a]ExpectedLongevity:1955 This scenario fixes only
the mortality rates in the consumer problem at their 1955 levels, with all other aspects unchanged from
the full model. [S1b]PopStructure:1955 This scenario fixes the mortality rates used to compute the
population structure at their 1955 levels, while the rest of the model remains unchanged.

To further isolate the composition and behavioral effects, we perform two counterfac-

tual simulations. The [S1a]ExpectedLongevity:1955 scenario fixes mortality rates in the

consumer problem, isolating the behavioral effect. The [S1b]PopStructure:1955 scenario

fixes mortality rates in population structure, isolating the composition effect. Our analysis
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reveals that these two effects influence inequality in opposite ways. The behavioral effect

amplifies wealth inequality, with greater asset accumulation to fund longer retirements,

the gap between younger individuals and those nearing retirement widens. In contrast,

the composition effect reduces wealth inequality, with changing age distribution of the

population there is fewer younger individuals (who hold limited assets) and more older

individuals (who hold substantial assets). However, the behavioral effect outweighs the

composition effect, leading to a net rise in wealth inequality.

5.2 Relative importance of rising longevity for wealth inequality

We compare the size of the effects driven by demographics with other key factors identified

in the literature. Figure 4 shows the contributions of changes in income inequality, taxes,

and technology to wealth inequality. For reference, the figure also includes the contribution

of the demographic transition.

To quantify these effects, we simulate a counterfactual scenario in which the relevant

parameters are fixed at their 1955 levels and compare it to the baseline scenario, where

those parameters evolve as observed historically. In both scenarios, the initial conditions

are identical, based on the same initial steady state at t = 0 (corresponding to the year

1935). The respective paths of mortality rates in the baseline and counterfactual scenarios

are revealed at t = 1 (year 1940).

To start, we analyze the impact of observed trends in income inequality, which reveal

three notable developments between 1950 and 2015. First, the share of college graduates

increased, which can influence income and wealth inequalities in varying ways. It may

reduce inequality by narrowing educational gaps and expanding opportunities, but if the

returns to higher education are substantial, it could instead exacerbate inequality.

Second, the college premium rose, amplifying income and wealth inequalities by widen-

ing the earnings gap between college graduates and non-graduates. However, it may

also have bolstered the wealth of the middle class, potentially offsetting its inequality-

enhancing effects.
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Figure 4: Impact of different factors evolution on wealth inequality (in Gini points)

-2 -1 0 1 2 3 4

Gini points

2050

2015

1975

[S1]Longevity:1955 [S2]IncomeINEQ:1955

[S3]Taxes:1955 [S4]Technology:1955

Note: The bars depict the differences in the wealth Gini coefficient for a given year between the baseline
scenario and the respective counterfactual scenarios, as defined by the formula ∆t = Gb

t − Gc
t . The

positive/negative number signifies that a given factor contributed to the increase/decrease of the Gini
coefficient. Counterfactual scenario [S1]Longevity:1955 was computed by fixing the mortality rates used
to compute both the population structure and in the consumer problem at the level from 1955, the
rest is as in the full model. Counterfactual scenario [S2]IncomeINEQ:1955 was computed by fixing
income characteristics at the 1955 levels, see Figures B.1, B.3 and B.5, the rest is as in the full model.
Counterfactual scenario [S3]Taxes:1955 was computed by fixing tax rates at the 1955 levels, see Figure B.7.
Counterfactual scenario [S4]Technology:1955 was computed by fixing the TFP growth rate, depreciation
rate, and labor share at the 1955 levels, see Figure B.6.

Third, income risk increased for both college graduates and individuals without a

college education. This had opposing effects: greater income dispersion contributed to

rising wealth inequality, while heightened income risk encouraged precautionary savings,

particularly among those with fewer assets, which mitigated wealth inequality. Details on

the baseline and counterfactual inputs for these analysis are provided in Online Appendix

B. The overall impact of these three factors on the Gini wealth coefficient ultimately

depends on the quantitative analysis.

In Figure 4, the counterfactual scenario [S2]IncomeINEQ:1955 demonstrates the im-

pact of these income changes. This scenario fixes income characteristics at their 1955

levels.12 Our simulations reveal that income changes are the primary driver of wealth

12Income risk (the variance of idiosyncratic productivity shocks) is held at its initial level, based on
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inequality over time. However, rising longevity has a substantial impact, with their ef-

fect being approximately half that of income changes. By 1975, income changes increase

the Gini coefficient by approximately 1.2 points, while rising longevity accounts for a

smaller increase of about 0.9 points. By 2015, income changes contribute 2.9 Gini points,

compared to 1.4 points from rising longevity. By 2050, income changes raise the Gini

coefficient by 3.7 points, while demographic factors account for 1.45 points.

These results highlight the critical role of income inequality and rising longevity in

shaping wealth inequality over time. Although income changes exhibit a larger and in-

creasing effect, the impact of rising longevity remains considerable. We present detailed

analysis concerning the contributions of specific income components to inequality in On-

line Appendix E.1.

Our results align with findings in the literature that identify income inequality as

a primary driver of wealth inequality, as demonstrated by studies such as Castaneda

et al. (2003) and Kindermann and Krueger (2022). The contribution of our study is its

explicit consideration and quantification of the role for rising longevity in shaping wealth

inequality inequality trends. We provide a more comprehensive view of the underlying

drivers of this phenomenon, by showing that changes in life expectancy and population

structure play an important role in explaining wealth inequality over time.

Another key determinant of wealth inequality is taxation.13 Figure 4 presents the

counterfactual scenario [S3]Taxes:1955, which examines the impact of tax changes by

holding tax rates constant at their 1955 levels (see Figure B.7), while all other elements

of the model remain unchanged. Our simulations show that changes in taxation reduce

the Gini coefficient by 1 point in 1975. Although the effect persists beyond this period, it

diminishes slightly, contributing to reductions of just under 1 point in 2015 and 0.8 points

in 2050.

The impact of demographic factors contrasts with that of taxation, as rising longevity

increases inequality, while taxation reduces it. The quantitative effect of demographic

factors is also slightly larger than that of taxation. Our findings regarding tax changes

are also consistent with the existing literature. For example, Hubmer et al. (2021), who

do not account for demographic effects, identify the decline in tax progressiveness during

estimates for cohorts entering the labor market between 1950 and 1954.
13Here we present the effects of changes in all taxes. Online Appendix E.2 offers details on how different

taxes affect wealth inequality.
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the late 1970s as a primary driver of rising wealth inequality. Although our model does

not single out tax changes as the key driver of wealth inequality, the qualitative effects of

income tax progressiveness align with their conclusions. As shown in the Online Appendix

E.2, increased labor tax progressiveness contributed to a decline in wealth inequality

by 1975. However, the subsequent decline in progressiveness resulted in rising wealth

inequality. This ongoing trend of declining tax progressiveness has historically intensified

wealth inequality and is expected to continue doing so in the future.

Finally, we examine the impact of technological changes. The counterfactual scenario

[S4]Technology:1955 captures these effects by fixing the TFP growth rate, depreciation

rate, and labor income share at their 1955 levels (for more details, refer to Figure B.6).

Our simulations show that technological changes reduce wealth inequality, lowering the

wealth Gini coefficient by 0.9 points in both 1975 and 2015, and by 1.0 point in 2050. We

present a detailed analysis in Online Appendix E.3.

Although the contribution of rising longevity is smaller than that of income dynamics

across all periods, it remains considerable. In contrast, the effect of tax changes is some-

what less pronounced. While much of the literature has focused on the roles of income

evolution and tax policy in shaping wealth inequality, the impact of rising longevity has

received less attention. Our results show the important role of demographic factors.

Sensitivity analyses To assess the robustness of our results, we conduct a series of sensi-

tivity checks, detailed in Online Appendix F. These checks specifically examine whether

the contribution of demographic factors to wealth inequality changes under alternative

assumptions.

First, we test the sensitivity of our results to calibration of the inverse elasticity of

intertemporal substitution, θ, which also determines risk aversion (Online Appendix F.1).

Second, we introduce persistent differences in interest rates between college-educated in-

dividuals and those with less than a college education (Online Appendix F.2). Third, we

remove discount factor shocks to assess their influence (Online Appendix F.3). Fourth,

we use an alternative formulation of the income process (Online Appendix F.4). Fifth, we

assume a higher projected TFP growth rate for the future (Online Appendix F.5). Finally,

we allow for unequal distribution of bequests (Online Appendix F.6). Rising longevity

consistently contributes to increasing wealth inequality in these experiments, increasing

the wealth Gini coefficient by approximately 1 point in 1975 and by nearly 1.5 points in
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both 2015 and 2050.

Despite robustness, our results are not without limitations. First, while our model

replicates an important part of wealth inequality dynamics, the rise in wealth inequality

in the recent decade is larger than implied by our model and macroeconomic inputs.

This may be related to increasing financialization, the permeation of demographic factors

additionally to rising longevity, etc. Second, due to the general equilibrium structure,

our model ignores the endogeneity of dimensions such as education and returns to skills.

Finally, models with dynasties can help to explain persistently high and low wealth.

6 Conclusions

The sources of wealth inequality, particularly the post-1970s rise in the U.S., remain a

subject of considerable debate. Much of the applied macroeconomic literature attributes

this increase to growing income inequality and a decline in redistribution within the tax

system. This study focuses explicitly on the role of rising old age longevity, analyzed

through the lens of an overlapping generations general equilibrium model. Although we

incorporate the channels identified in previous research, we also quantify the impact of

rising longevity. Our findings indicate that increased longevity contributed to nearly

a 1 Gini point increase in wealth inequality in the U.S. by 1975 and nearly 1.5 Gini

points by 2015. Additionally, using demographic projections, we demonstrate that these

mechanisms are expected to further drive wealth inequality upward in the coming decades.

This substantial role of demographics is primarily attributed to the behavioral channel.

As individuals expect to live longer in old age, they adjust their asset accumulation and

decumulation patterns, significantly affecting both the general equilibrium of this economy

and the distribution of wealth and income. This behavioral effect is stronger than the

impact of changes in population structure.

Our model incorporates carefully calibrated mechanisms discussed in the existing lit-

erature, enabling counterfactual simulations to evaluate the relative importance of income

inequality, tax channels, and demographics. In the OLG framework, we find that the tax

channel plays a relatively minor role, and its ability to offset the rise in wealth inequality

will remain fairly limited. Additionally, we show that the evolving nature of work, cou-

pled with rising income inequality, will further amplify wealth inequality in the future,
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compounding the effects of rising longevity.

References

Aguiar, M., Bils, M., and Boar, C. (2024). Who are the hand-to-mouth? The Review of

Economic Studies.

Aiyagari, S. R. (1994). Uninsured Idiosyncratic Risk and Aggregate Saving. The Quarterly

Journal of Economics, 109(3):659–684.

Aoki, S. and Nirei, M. (2017). Zipf’s Law, Pareto’s Law, and the Evolution of Top Incomes

in the United States. American Economic Journal: Macroeconomics, 9(3):36–71.

Auclert, A., Malmberg, H., Martenet, F., and Rognlie, M. (2021). Demographics, wealth,

and global imbalances in the twenty-first century. NBER Working Paper 29161.

Autor, D., Goldin, C., and Katz, L. F. (2020). Extending the race between education and

technology. AEA Papers and Proceedings, 110:347–51.

Bach, L., Calvet, L. E., and Sodini, P. (2020). Rich pickings? risk, return, and skill in

household wealth. American Economic Review, 110(9):2703–47.

Barro, R. J. and Sahasakul, C. (1983). Measuring the Average Marginal Tax Rate from

the Individual Income Tax. The Journal of Business, 56(4):419–452.

Bauluz, L. and Meyer, T. (2024). The wealth of generations. WIDWorking Paper 2024/04,

WID - World Inequality Lab.

Benhabib, J., Bisin, A., and Luo, M. (2019). Wealth Distribution and Social Mobility in

the US: A Quantitative Approach. American Economic Review, 109(5):1623–1647.

Benhabib, J., Bisin, A., and Zhu, S. (2011). The distribution of wealth and fiscal policy

in economies with finitely lived agents. Econometrica, 79(1):123–157.

Bewley, T. (1977). The permanent income hypothesis: A theoretical formulation. Journal

of Economic Theory, 16(2):252–292.

Bielecki, M., Brzoza-Brzezina, M., and Kolasa, M. (2020). Demographics and the natural

interest rate in the euro area. European Economic Review, 129(C).

22



Boppart, T. and Krusell, P. (2020). Labor supply in the past, present, and future: A

balanced-growth perspective. Journal of Political Economy, 128(1):118–157.

Cagetti, M. and De Nardi, M. (2006). Entrepreneurship, frictions, and wealth. Journal

of Political Economy, 114(5):835–870.

Case, A. and Deaton, A. (2021). Life expectancy in adulthood is falling for those without a

ba degree, but as educational gaps have widened, racial gaps have narrowed. Proceedings

of the National Academy of Sciences, 118(11):e2024777118.

Castaneda, A., Diaz-Gimenez, J., and Rios-Rull, J.-V. (2003). Accounting for the U.S.

Earnings and Wealth Inequality. Journal of Political Economy, 111(4):818–857.

Chetty, R., Grusky, D., Hell, M., Hendren, N., Manduca, R., and Narang, J. (2017).

The fading American dream: Trends in absolute income mobility since 1940. Science,

356(6336):398–406.

De Nardi, M. (2004). Wealth Inequality and Intergenerational Links. Review of Economic

Studies, 71(3):743–768.

Deaton, A. and Paxson, C. (2000). Growth and saving among individuals and households.

Review of Economics and Statistics, 82(2):212–225.

Eggertsson, G. B., Mehrotra, N. R., and Robbins, J. A. (2019). A Model of Secular Stag-

nation: Theory and Quantitative Evaluation. American Economic Journal: Macroeco-

nomics, 11(1):1–48.

Epper, T., Fehr, E., Fehr-Duda, H., Kreiner, C. T., Lassen, D. D., Leth-Petersen, S., and

Rasmussen, G. N. (2020). Time discounting and wealth inequality. American Economic

Review, 110(4):1177–1205.

Fagereng, A., Guiso, L., Malacrino, D., and Pistaferri, L. (2020). Heterogeneity and

persistence in returns to wealth. Econometrica, 88(1):115–170.

Fagereng, A., Holm, M. B., Moll, B., and Natvik, G. (2019). Saving behavior across the

wealth distribution: The importance of capital gains. NBER Working Paper 26588.

Gabaix, X., Lasry, J.-M., Lions, P.-L., and Moll, B. (2016). The dynamics of inequality.

Econometrica, 84(6):2071–2111.

23
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A Online Appendix: the model

In this section we present details of our general equilibrium OLGmodel with heterogeneous

households that were relegated from the main text to the Online Appendix.

A.1 Social security

Post-retirement (j > j̄), benefits grow at the same rate as the aggregate labor income in

the economy. Thus benefits are given by:

bs,j̄,t = ϱj̄,t · pj̄,t · fs,j̄,twtetℓt and bs,j,t =
wtLt

wt−1Lt−1

bs,j−1,t−1 for j > j̄. (A.1)

Drawing rights (average lifetime earnings relative to average earnings in the economy)

fs,j,t evolve according to

fs,j+1,t+1 =
1

j

(
(j − 1) · fs,j,t +

min {wtes,j,tℓs,j,t, capt}
wtetℓt

)
, (A.2)

where capt denotes the OASDI cap, expressing earnings relative to average economy earn-

ings over a lifetime. We compute AIME for the whole working period rather than the

35 highest-earnings, consistent with 5-year periods and prior literature (Nishiyama and

Smetters, 2007; McGrattan and Prescott, 2017).

The replacement rate pj̄,t is computed according to

pj̄,t = 0.9 ·min

{
1,
F1,t

fs,j̄,t

}
+ 0.32 ·min

{
1− F1,t

fs,j̄,t
,
F2,t

fs,j̄,t

}
+ 0.15max ·

(
1− F2,t

fs,j̄,t
, 0

)

where bend points (F1,t, F2,t) reflect the progressive replacement rates and are expressed

as a fraction of average earnings (McGrattan and Prescott, 2017).

A.2 Production

Our model features a standard Cobb-Douglas production function Yt = Kαt
t (AtLt)

1−αt

with labor augmenting technological progress where At+1/At = 1 + γAt+1. The standard

profit maximization problem of the firm yields the following factor prices

rt = αtK
αt−1
t (AtLt)

1−αt − dt and wt = (1− αt)K
αt
t A

1−αt
t L−αt

t , (A.3)
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Gross capital return rt + dt is taxed at the rate τk,t so that the after-tax rate of return on

capital is

r̃t = (1− τk,t) (rt + dt)− dt. (A.4)

A.3 Government

The tax revenue Tt is used to finance spending on government purchases Gt and to sub-

sidize the social security system, St:

Gt + St = Tt, (A.5)

where

Tt =
∑

s∈{L,H}

j̄−1∑
j=1

Ns,j,t

∫
Ω

Tt (ys,j,t (zs,j,t) , ȳt) dPs,j,t + τk,t (rt + dt)Kt + τc,tCt. (A.6)

Here Ct denotes aggregate consumption, Ct =
∑

s∈{L,H}
∑J

j=1Ns,j,t

∫
Ω
cs,j,t (zs,j,t) dPs,j,t,

and Ps,j,t is the probability measure describing the distribution of agents of education

level s and age j in period t over the state space Ω.

The subsidy to the social security system St is equal to the difference between the

total pension benefit payments and the total contributions:

St =
∑

s∈{L,H}

J∑
j=j̄

Ns,j,t

∫
Ω

bj,t (zs,j,t) dPs,j,t − τss,twtLt. (A.7)

We assume that the model is closed by government expenditure Gt.

A.4 Equilibrium

Given government policies
{
τc,t, τk,t, τℓ,tλt, τss,t,St, ϱj̄,t

}∞
t=0

a competitive equilibrium is a

sequence of: i) value functions
{
(Vs,j,t (zs,j,t))

J
j=1

}∞

t=0
for s ∈ {L,H}; ii) policy func-

tions
{
(cs,j,t (zs,j,t) , ℓs,j,t (zs,j,t) , fs,j+1,t+1 (zs,j,t) , as,j+1,t+1 (zs,j,t))

J
j=1

}∞

t=0
for s ∈ {L,H};

iii) prices {rt, wt}∞t=0; iv) aggregate quantities {Lt, Kt, Yt, Ct, Gt, Tt}∞t=0; and v) measures

of households
{
(Ps,j,t)

∞
j=1

}∞

t=0
for s ∈ {L,H} such that:

• firm problem: for each t, prices {rt, wt} satisfy equations (A.3);
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• household problem: for each s, j, t value functions Vs,j,t (zs,j,t) and policy functions

cs,j,t (zs,j,t) , ℓs,j,t (zs,j,t) , fs,j+1,t+1 (zs,j,t) as,j+1,t+1 (zs,j,t) solve the problem (2);

• government: the government budget and the pension system constraints are satis-

fied, i.e., equations (A.5) and (A.7) are satisfied;

• markets clear:

labor market: Lt =
∑

s∈{L,H}

j̄−1∑
j=1

Ns,j,t

∫
Ω

es,j,t (zs,j,t) ℓs,j,t (zs,j,t) dPs,j,t

asset market: Kt+1 =
∑

s∈{L,H}

J∑
j=1

Ns,j,t

∫
Ω

as,j+1,t+1 (zs,j,t) dPs,j,t

goods market: Yt = Ct +Kt+1 − (1− dt)Kt +Gt

• probability measures: measures of households
{
(Ps,j,t)

∞
j=1

}∞

t=0
for s ∈ {L,H} are

consistent with exogenous processes for productivity, discount factors and returns,

and policy functions.
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B Online Appendix: calibration

In this section we present the details of our baseline calibration, with data sources and

intermediary steps. We also describe how we arrive at counterfactual calibration of the

model parameters.

B.1 Demographics

We use population data from Centers for Disease Control and Prevention (CDC). The

five-year averages for births and survival probabilities are provided by the United Nations

Population database. This data covers historical births and survival probabilities as well

as provides a demographic forecast until 2100. We assume that after that year the birth

rate continues at the same level, equal to 0.06% per year. We also assume that survival

probabilities stabilize at their 2100 levels.

The share of households with s = H in each birth cohort is set to match the share of

individuals with at least four years of college completed by the age of twenty-five in the

U.S. Census and American Community Survey. This data covers cohorts born in the years

1915-1995. We obtain the trend component by applying the Hodrick-Prescott filter of the

series and then calculate five-year averages of the trend component. When we extrapolate

into the future, we aim for the smoothness of calibration. We assume that the trend share

increases from 35% in 2020 to 40% in 2030 and then gradually grows to reach 44.5% by

2100.14 The path of the share of households with a college education in each birth cohort

that we use as an input for the model is shown in Figure B.1. The extrapolated share of

college graduates is smooth and continues the observed trend.

14We need to assume a constant terminal level in the far future to calculate the final steady state.
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Figure B.1: Share of college graduates
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Note: Share of college graduates by the age of 25. from U.S. Census and American Community Survey.
The share of college graduates is adjusted to five-year periods by applying Hodrick-Prescott filter with
parameter 6.25 and calculating five-year averages of the trend component.

In our model, education status affects mortality risk (in line with empirical evidence,

see Chetty et al., 2016). Observational data by Case and Deaton (2021) reveal that

mortality for cohorts reaching the age of 50 between 1935 and 1965 was substantially lower

for individuals with a college education and that gap was widening especially for the most

recent of these birth cohorts, as portrayed in Figure B.2. Note that life expectancy was

increasing for all levels of education, but the increase was more pronounced for individuals

with a college education. Individuals from birth cohorts that reach 50 after 1965 are also

characterized by a large heterogeneity of mortality rates depending on college education,

but here Case and Deaton (2021) rely on demographic projections. They suggest that the

gap will eventually narrow.
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Figure B.2: Life expectancy at the age of 50 for college, less than college educated
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Note: The blue line shows life expectancy at the age of 50 from United Nations Population database.
The other two lines show life expectancy at the age 50 for individual with college education and with
less than college education. Life expectancy by education status is calculated using data from Case and
Deaton (2021). See Section 3.1 for details. Data are adjusted to five-year periods by calculating five-year
averages.

The survival probabilities in the model, ψs,j,t, depend on the education level. To cap-

ture this heterogeneity, we use U.S. death certificate data from Case and Deaton (2021)

which include survival probabilities by cohort, age, and college attainment in years 1990

to 2018. We calculate ratios of survival probabilities of college-educated to survival prob-

abilities of those who do not have a college education. We then use these ratios together

with survival probabilities for the entire population and the data on the share of college-

educated households to obtain ψs,j,t. For cohorts born before 1915, we extrapolate the

ratio of survival probabilities for college-educated individuals relative to those without a

college education using the value observed for the 1915 cohort using the first observation

in Case and Deaton (2021), that is the ratio is assumed to be 1.018. Analogously, for

cohorts born after 1990, we extrapolate the using the value observed for the 1990 cohort,

that is 1.006. The extrapolated values of ψs,j,t additionally depend on the projected sur-

vival probabilities for the entire population from the United Nations Population Database

and our extrapolation of shares of college graduates. We show life expectancy at the age

of 50 for the subsequent birth cohorts in Figure B.2.
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B.2 Income

Recall Equation (3) that describes es,j,t : ln es,j,t = βs,t + ζs,j + ωs,j,t. where βs,t is a time-

varying component common to all households with the same education level s (college

premium), ζs,j is a type-specific deterministic age profile and ωs,j,t follows a first-order

Markov chain with states ωs,j,t and transition matrix πω
s,j,t (ωs,j+1,t+1 | ωs,j,t). In this Ap-

pendix we describe how we calibrate each of the three components of es,j,t.

B.2.1 College premium

We normalize βL,t = 1 and use the (log) college wage premium series from Goldin and

Katz (2008), extended in Autor et al. (2020) to 1914-2020 to construct our measure of

βH,t. We calculate the trend component using the Hodrick-Prescott filter. Given that the

growth of the trend component slowed down after 2000 and essentially halts around 2015,

we assume the college premium will remain constant after 2020. The level of college wage

premium we use in our model is shown in Figure B.3.

Figure B.3: Skill premium
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Note: Skill premium from Autor et al. (2020). Skill premium is adjusted to five-year periods by applying
Hodrick-Prescott filter with parameter 6.25 and calculating five-year averages of the trend component.

B.2.2 Processing PSID data

We use 1970-2019 waves of the Panel Study of Income Dynamics (PSID) to calibrate

type-specific deterministic age profiles ζs,j and idiosyncratic income risk ωs,j,t.
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Sample selection Our sample consists of households with heads that satisfy the following

conditions:

• Older than 19 and younger than 66.

• Provide non-intermittent responses to the survey.

• Appear at least four consecutive times in the panel (after restricting observations,

as explained below)

Observations in a particular year are dropped if:

• Household (head + spouse) hourly labor income is greater than $250 or smaller than

$2 (for variable definitions see below; all nominal variables are deflated to January

2000).

• Annual growth of household hourly labor income is greater than 500% or the annual

fall is greater than 80%.

• Household total work hours in a year is lower than 260 hours (5 hours per week).

• Total household labor income is smaller than $1’000 or greater than $1’000’000.

Note that a household can be excluded from a sample in a particular year, but still

remain in the sample in the other years, as long as it satisfies conditions for at least four

consecutive years.

We label households who receive a sufficiently large share of income from businesses in

a given period as “superstar”. We divide our sample into non-overlapping 5-year periods.

We label a household as an “superstar” if in a given 5-year period it satisfies two criteria:

1) its household income over a period has to be above the 25th percentile; 2) the share

of 5-year business income in total income has to exceed 25%. Note that if a household is

an “superstar” in some periods, we keep observations corresponding to this household in

periods in which it is not labeled as an “superstar”.

In our baseline specification, we exclude “superstar” when estimating ζs,t nor a first-

order auto-regressive process (4). We use these observations to compute the share of

“superstar” in the economy (as a moment target) and exit rates (as a model parameter).

We study the role of this assumption in Appendix F.4, where we present the alternative

calibration of income processes. Specifically, there we do not distinguish entrepreneurs.
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Instead, we estimate the income process ζs,t and a first-order auto-regressive process (4)

using all observations jointly. This specification of the model does not have a “superstar”

state in the income process.

Variable definitions

• Age – Individuals are assigned to a particular birth cohort by subtracting their age

from the year of the last survey in which they appeared. The age in each year is

thus calculated based on the cohort (eliminating the possibility that someone had

the same age in two consecutive surveys).

• Total household labor income – Sum of spouse and head wages and salaries, bonuses,

overtime payments, tips, commissions, professional practice or trade, additional job

income, miscellaneous labor income, as well as business income and farm income.

Up to 1993 we use two variables which include all above: (i) assets part of business

income for both head and spouse (V20439 in 1992), (ii) the rest (in 1993 ER71321

for spouse; V23323 for head). From 1994 we sum the following variables: (i) labor

income (in 1994 ER4144 for spouse; ER4140 for head), (ii) S/H part of labor business

income (in 1994 V21806 for spouse; ER4119 for head), (iii) S and H part of farm

income (ER4117 in 1994), (iv) assets part of business income for head or spouse (in

1993 V21814 for spouse and V21810 for head).

• Total work hours – Sum of spouse and head total annual work hours on all jobs

(including overtime).

• Household hourly labor income - Total household labor income divided by total

work hours.

• Education – Based on variable indicating highest grade or year of school completed

(ER30052 in 1970) education was transformed into categorical variable taking 3

levels: (i) 0-11 grades; (ii) High School or 12 grades and non-academic training; (iii)

College dropout, BA degree or higher.

B.2.3 Deterministic age profiles and income risk

Age profile ζs,j estimation We recover deterministic age profiles ζs,j by applying Deaton

and Paxson (2000) decomposition. This method allows for the identification of age effects,
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controlling for year and cohort effects, such that: 1) the sum of year effects is normalized

to 0, and 2) they are orthogonal to a linear time trend. This assumption overcomes the

identification problem (cohort is colinear with age and year) and attributes growth in

wages to age and cohort effects, whereas year effects are responsible for cyclical fluctu-

ations. Thus to obtain ζs,j we estimate a simple regressions (separately for s = L and

s = H)

lnwi,s,j,t =
60∑

j=25

ζ̂s,j · Ages,j +
1986∑

c=1926

αs,c · Cohorts,c +
2019∑

t=1970

γs,t · Years,t + ϵi,s,j,t, (B.1)

where wi,s,j,t is hourly household labor income of household i. Households are assigned to

a particular birth cohort c by subtracting their age from the year of their last available

survey. Ages,j,Cohorts,c and Years,t are dummies which take value one for observations

from year t, age j and cohort c. To overcome the issue of colinearity between age, cohort

and year we create new year dummies (and use it instead of Years,t in regression):

ds,t = Years,t − [(t− 1970) · Years,1971 − (t− 1971) · Years,1970] .

Although we drop ds,1970 and ds,1971, the values of γs,t for those years can be recovered

based on the assumption of their orthogonality to the time trend and the assumption of∑2019
t=1970 γs,t = 0. We use residuals from regression equation (B.1) in the next step and

denote them by ω. Figure B.4a shows the results of estimation. We calculate five-year

averages of ζ̂s,j to use as an input in the model. The results are shown in Figure B.4b.
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Figure B.4: Deterministic profile of log productivity across age

(a) Empirical estimates (b) Model inputs

Note: Deterministic profiles of log productivity are calculated using PSID data, with the restrictions
described above. The figure shows the estimates ζ̂s,j from regression equation (B.1), relative to the age
of 20 and the level of education “high school or less”. As inputs for the model, the deterministic profiles
of productivity are calculated by taking exp of 5-year averages of the point estimates ζ̂s,j . The figure
shows exp(ζs,j), relative to the age of 20-24 and the level of education “high school or less”.

Income process estimation We use the residuals from regression (B.1) as our measure

of idiosyncratic productivity. Use ωi,s,c,t to denote the level of idiosyncratic productivity

in year t for individual i of type s, born in year c. We assume

ωi,s,c,t = ϱω,sωi,s,c,t−1 + εω,i,s,c,t, εω,i,s,c,t ∼ N
(
0, σ2

ω,s,c

)
with ωi,s,c,c = 0. This formulation assumes that i) ϱω,s is common to all individuals of

the same education level s (it does not depend on c nor t); ii) σ2
ω,s,c is common to all

individuals of the same education level s and birth year cohort c (it does not depend on

t), iii) all individuals are born with the same level of idiosyncratic productivity. We have

V ar (ωi,s,c,c) , and V ar (ωi,s,c,t) = ϱ2ω,sV ar (ωi,s,c,t−1) + σ2
ω,s,c,

and Cov (ωi,s,c,t, ωi,s,c,t+k) = ϱkω,sV ar (ωi,s,c,t) .

Define ζs,c,t,k := Cov (ωi,s,c,t, ωi,s,c,t+k). Observe that

ζs,c,t,4 − ζs,c,t,3
ζs,c,t,2 − ζs,c,t,1

=
ϱ4ω,sV ar (ωi,s,c,t)− ϱ3ω,sV ar (ωi,s,c,t)

ϱ2ω,sV ar (ωi,s,c,t)− ϱ1ω,sV ar (ωi,s,c,t)
=
ϱ4ω,s − ϱ3ω,s
ϱ2ω,s − ϱ1ω,s

= ϱω,s.
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Moreover,

V ar (ωi,s,c,c+1) = σ2
ω,s,c.

These two moments moments pin down
(
ϱω,s, σ

2
ω,s,c

)
. In our estimation we use all avail-

able moments (variances and covariances). We follow Guvenen (2009) and minimize the

“distance” between the elements of the empirical covariance matrix of income residuals

ω and its counterpart with the entries described above. We group households of each

education level into 5-year bins by their birth year and restrict σ2
ω,s,c to be the same for

each bin. For example, households in which the head was born in years 1936, 1937, 1938,

1939 and 1940 have the same σ2
ω,s,c = σ2

ω,s,1936. We calculate empirical moments using all

available observations and use an identity matrix in the estimation.

We present the results of our estimation in Figure B.5.

Figure B.5: Variances of idiosyncratic productivity shocks

Note: Variances of idiosyncratic productivity shocks. Solid lines are point estimates, shaded areas are
95% confidence intervals (bootstrap with 1000 repetitions).

Recall that one period in the model corresponds to five years. To map the estimates

to the model inputs ϱ̄ω,s, σ̄
2
ω,s,c we calculate

ϱ̄ω,s = ϱ5ω,s and σ̄2
ω,s,c = σ2

ω,s,c

1− ϱ10ω,s
1− ϱ2ω,s

.
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We then correct the mean of idiosyncratic income shocks εω,i,s,c,t so that E [expωi,s,c,t] = 1.

Finally, to use the estimates process as an input in the model, we approximate each

resulting AR(1) process with a 5-state Markov chain by the Rouwenhorst method. We

assume the Markov chains for cohorts that entered the labor market before 1955 are the

same as for the cohort that entered the labor market in 1955. Similarly, for cohorts that

entered the labor market after 2005 we use the estimates for the cohort that entered the

labor market in 2005.

Extra income state We add an extra income state to capture business income. This

state can be reached only from the 5th state and upon exiting it the household moves

to the state corresponding to the average productivity (3rd state for its education level).

We assume that the transition probabilities from and to this extra state are the same for

each education level s.

We use households labeled as “superstars” in the PSID data to pin down these two

transition probabilities. In each 5-year period, we calculate the share of “superstars” in

the population. The average share is 5.3% in our 1970-2020 sample. We also calculate

the exit rate, the fraction of “superstars” that transition out of being “superstars” in the

next 5-year period. The average exit rate is approximately 2%.

We assume that idiosyncratic productivity corresponding to this state is a multiple

of the level of productivity associated with the 5th state, the same number for all s, j, t.

PSID reports unincorporated business income for husband and wife, but the aggregate

share of this income in total household labor income for households aged 25-65 amounts to

roughly 13%, whereas it is 21% in the NIPA. Instead of relying on self-reported business

incomes in PSID to calibrate the multiple by matching the average share of household

business income in total disposable income from BEA in the years 1950-2020, equal to

21%.

B.3 Idiosyncratic return risk

To calculate the standard deviation of return shocks, we take data on share of wealth held

by a particular wealth percentile group from Distributional Financial Accounts (DFAs)

provided by the Federal Reserve Board. The DFAs use the Financial Accounts of the

United States and the Survey of Consumer Finances (SCF). The DFAs track the evolution
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of share of U.S. household wealth held by five percentile groups of wealth: the top 0.1

percent, the remaining 0.9 percent of the top 1, the next 9 percent (i.e., 90th to 99th

percentile), the next 40 percent (50th to 90th percentile), and the bottom half (below the

50th percentile). We combine together shares held by the top 0.1% and the next 0.9%.

We average shares held by the resulting four percentile groups over the period 1989-2022:

ϖgroup ∈ {ϖ0−50, ϖ50−90, ϖ90−99, ϖ99−100}.

The wealth percentiles analyzed in Hubmer et al. (2021) (HKS) differ from those in

the DFAs. We use the following mapping:

1. For bottom 50% (DFAs) we assume standard deviation of 0.023 (corresponding to

P0-P40 in HKS);

2. For 50-90% (DFAs) we assume standard deviation of SD of 0.081 (corresponding to

P50-P60 in HKS);

3. For 90-99% (DFAs) we assume standard deviation of SD of 0.094 (corresponding to

P90-P95 in HKS);

4. For 99-100% (DFAs) we assume standard deviation of SD of 0.119 (corresponding

to P99-P99.5 in HKS).

We then calculate the variance of annual excess returns as

ϖ2
0−50 · σ2

r,0−50 +ϖ2
50−90 · σ2

r,50−9 +ϖ2
90−99 · σ2

r,90−99 +ϖ2
99−100 · σ2

r,99-100.

One period in the model corresponds to five years. For simplicity, we approximate the

variance of five-year returns as 5 times the variance of annual returns. This approximation

is exact if the deterministic part of returns is equal to zero.

B.4 Production function

We use Penn World Tables 10, published by the Groningen Growth and Development

Center (GGDC), to calibrate all the time-varying parameters of the production function.

Below we describe the details of processing the GGDC data as well as extrapolation. We

remove the cyclical component by applying the Hodrick-Prescott filter. The values for

each period are obtained as five-year averages of the trend component.
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Depreciation rates dt (Figure B.6a, variable delta) We take annual depreciation rates

and aggregate them to five-year rates.15 The trend component of depreciation grows from

roughly 15% over a five-year period to roughly 21%. Since the trend component did not

exhibit much change in the 1960s, we assume a constant level in the years 1935-1955,

equal to the trend component of the depreciation rate in 1955.

Output elasticities with respect to labor 1 − αt (Figure B.6b, variable labsh). Labor

share in our model is equal to 1−αt matched directly labor share in the U.S. in 1950-2019.

We assume the trend component of the labor share declined linearly between 1935 and

1950 (there is no data for these years in PWT 10). We assume that labor share declines

from 59.7% in 2020 to 57% in 2100, with the rate of decline gradually slowing down, as

portrayed in Figure B.6b.

Labor-augmenting technological progress γAt+1 (Figure B.6c, variable rtfpna) We take

raw TFP growth estimates from PWT 10 to calculate the TFP level (normalizing TFP

in 1935 to one). Next, we adjust it using αt to make it labor-augmenting. We then divide

the resulting measure of labor-augmenting productivity by a time-varying factor that

represents productivity changes resulting from changing age and education composition,

and changing skill premium. This procedure yields a path of At that starts in the 1950s

and ends in 2017 which we use in all demographic scenarios considered in this paper.

For the years between 1930 and 1950 we assume flat TFP growth rate. For the years

after 2020 we take the estimates of 0.6% per annum, consistent with Fernald (2016) who

projects future annual overall TFP growth rates between 0.4% and 0.8%.

15The source of variation in depreciation rates is the changing composition of the U.S. capital stock:
GDDC does not adjust depreciation rates over time for the same type of capital input, but it computes
capital input shares, which serves to provide a weighted average depreciation rate for the U.S. economy.
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Figure B.6: Technology
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Note: Data are taken from Penn World Tables 10. Depreciation rate is variable delta, labor share is
variable labsh, TFP growth rate is variable rtfpna. The data was adjusted to five-year periods. We
also remove the cyclical component by applying Hodrick-Prescott filter. The values for each period are
obtained as five-year averages of the trend component.

B.5 Taxes

Average tax rates on labor income τℓ,t, capital income τk,t, and consumption τc,t (Fig-

ures B.7a, B.7b, B.7c). Tax rates constitute inputs into model directly, in other words,

there is no smoothing of tax rates. Extrapolation takes the last data point and assumes

the taxes constant into the future. As described in the A.3, we close the model with

government expenses.

We use series from McDaniel (2007) to calibrate the average labor income tax rate

τℓ,t, the gross capital income tax rate τk,t, and the consumption tax rate τc,t. These rates

match the shares of revenues from capital income tax, labor income tax, and consumption
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tax observed in the data. We calculate the five-year averages of the series to use as inputs

for our model. In the early periods, for which we do not have data, we assume the tax

rates are equal to their first available value of the five-year average. We assume that tax

rates in the future are equal to their last observed value of the five-year average.

Labor income tax progressivity λt (Figure B.7d). To obtain λt, the parameter governing

the extent of labor income tax progressivity, we follow Ferrere and Navarro (2018). They

calculate λt = (AMTRt − ATRt) / (1− ATRt), where AMTRr is the average marginal

tax rate and ATRt is the average tax rate. We use measures of AMTRt from Barro and

Sahasakul (1983) for 1916-1946 and from Mertens and Montiel Olea (2018) since 1946.

Average tax rates are calculated as the sum of federal personal current taxes divided by

the total market income from Piketty and Saez (2003). We calculate the five-year averages

of the resulting series to use as input for our model.

B.6 Social security contributions

To set the effective rate of social security contribution τss,t we use data on social security

contributions relative to GDP from the OECD and calculate the five-year averages. See

Figure B.8 for the path that we use as an input. We assume the ratio is constant after

2015, consistent with its relative stability since the 1990s. We assume the ratio was low

in the 1940s and that this ratio gradually increased in the 1950s and the 1960s.

The parameters used to calculate pensions in the social security system, including

the OASDI cap and the bend-points for AIME (F1,t, F2,t) are taken from McGrattan and

Prescott (2017) and remain constant over time.

We use the parameter ϱj̄,t to adjust the generosity of pension benefits (see Section

A.1). In the early period of our model, social security coverage was not universal (the

1935 Act provided compulsory coverage for workers in commerce and industry only, by

1956 the coverage was extended to approximately 90% workers). In addition, there were

very few retirees given the recent adoption of social security. Over subsequent years,

coverage increased, and data became informative of the actual share of beneficiaries in

society. We manipulate ϱj̄,t to capture these patterns and calibrate its value so that the

ratio of benefits to GDP in our model aligns closely with the data (see Figure D.3). Figure

B.9 portrays the time evolution of ϱj̄,t. We use the same path in all our experiments.
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Figure B.7: Tax rates
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(d) Labor income tax progressivity, λ

Note: labor income tax average rate, gross capital income tax rate, and consumption tax rate are from
McDaniel (2007). Labor income tax progressivity, λ, is calculated by using measures of average marginal
tax rates from Barro and Sahasakul (1983) and Mertens and Montiel Olea (2018) and total market income
from Piketty and Saez (2003). See the main text.

Figure B.8: Social security contributions to GDP
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Note: Social security contributions to GDP series is from OECD. Social security contributions are calcu-
lated as the sum of contributions, voluntary contributions, and imputed contributions. Data are adjusted
to adjusted to five-year periods by calculating five-year averages.
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Figure B.9: Replacement rate scale parameter ϱj̄,t
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Note: The replacement rate scale parameter is calibrated to match the ratio of pension benefits to GDP.
We restrict the values of this parameter to be nondecreasing over time.

We do not explicitly introduce Medicare in our framework. In our model, Medicare is

included as a part of government purchases (once it is introduced) financed by tax revenue

consistent with the data. In other words, Medicare is included on the macroeconomic level.

In addition, our model does not feature health shocks. This has important consequences.

On the one hand, there are no precautionary savings to insure against the health shocks in

the behavior of the agents in our model. On the other hand, introducing explicit Medicare

transfers and assigning them to individuals would not introduce any interesting patterns

in saving behavior.

Introducing health shocks and Medicare could further amplify the effect of rising

longevity on wealth inequality. In our model, the agents save for old-age consumption,

and the longer they expect to live in retirement, the higher the optimal accumulated stock

of savings. If rising longevity after retirement was associated with an increased risk of

adverse health shocks, the old-age saving motive would be stronger than in a model with-

out health shocks. Medicare operates as an insurance mechanism (similar to pensions),

but empirical research as well as applied macroeconomic models show that the insurance

is incomplete and agents save (or dis-save slower) in the old age in anticipation of out of

pocket medical expenses.
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C Online Appendix: population structure

Figure C.1 shows comparison of population structure in selected years in the baseline

calibration and in the counterfactual scenario with longevity fixed at the 1955 levels.

Figure C.1: Population structure: a comparison for four periods
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Note: data from Centers for Disease Control and Prevention (CDC).
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D Online Appendix: model vs data

Virtually almost all macroeconomic parameters in the model are derived from empirical

data. The model includes four key endogenous variables: (1) the rate of return, rt; (2)

average hours worked per capita; (3) the expenditure on social security benefits as a share

of GDP; and (4) the ratio of bequests to GDP.

We begin by comparing the rate of return rt in the model to data from PWT 10, shown

in Figure D.1. The model is calibrated to match the initial interest rate value for the 1950s,

after which its behavior is fully endogenous. The model successfully replicates the overall

trend and captures some degree of fluctuations over time. The discrepancy between the

model and the data in recent years could stem from the absence of government debt in

the model. In the data, government debt has increased significantly in recent years, which

likely mitigated the decline in interest rates observed in the real economy. In our model,

government expenses serve as the fiscal closure mechanism, but public debt is excluded

to avoid introducing ad hoc assumptions in counterfactual scenarios. As a result, the

increased savings in the model generate a stronger ”saving glut” mechanism compared to

the data, leading to a slightly steeper decline in the interest rate.

Figure D.1: The real interest rate, model vs data
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Note: The thick gray line represents data from Penn World Tables 10 (variable irr), adjusted to five-year
periods by applying a Hodrick-Prescott filter with a parameter of 6.25 and calculating five-year averages
of the trend component, then converted to an annual rate of return. The solid black line represents the
annual rate of return rt from our baseline simulation.

Next, Figure D.2 compares average annual hours in the model to the data. Following

Boppart and Krusell (2020), we calculate average hours in the data by multiplying average
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hours worked per engaged person by the number of engaged persons (from Penn World

Tables 10) and dividing by the population aged 20–64 (from the OECD). Both the data

and model values are normalized to their means for comparability.

The model accurately captures the lack of a long-term trend in average hours in the

postwar U.S., consistent with Boppart and Krusell (2020). However, the model generates

slightly larger fluctuations than observed. The largest discrepancy occurs after 2010, as

the model does not replicate the decline in hours associated with the Great Recession.

Figure D.2: Average annual hours per capita aged 20–64, model vs data
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Note: The thick gray line represents the data, first adjusted to five-year periods by applying Hodrick-
Prescott filter with parameter 6.25 and calculating five-year averages of the trend component), and then
normalized by dividing by the 1950-2015 average of the trend component. To obtain average annual
hours per capita aged 20-64 in the data we follow Boppart and Krusell (2020). We multiply the average
annual hours worked by person engaged (variable avh) by the number of persons engaged (variable emp)
from Penn World Tables 10 and divide by population aged 20-64 from the OECD. The solid black line
represents the rate of average hours worked in the model, normalized by the 1950-2015 average.

For social security, we calibrate the model using the ratio of social security contribu-

tions to GDP. Since our steady state is calibrated to 1935, when social security coverage

was limited, we introduce an additional parameter, ϱj̄,t (see Section A.1), to capture the

expansion of coverage over time.16 The path of ϱj̄,t is shown in Figure B.9 in Online Ap-

pendix B.6. Figure D.3 shows that the model replicates both the levels and time variation

of social security expenditures well. Furthermore, the model’s future projections align

closely with those of the Congressional Budget Office.

16Note that ϱj̄,t alone does not determine the share of social security expenditures in GDP; this share
is endogenously determined in the model equilibrium.
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Figure D.3: Share of expenditure on social security benefits in GDP, model vs data
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Note: The solid gray line represents data from the Congressional Budget Office (SS.PGDP variable), with
the forecast as of 2015 shown by the gray dashed line. To smooth the series, we apply the Hodrick-Prescott
filter and calculate five-year averages of the trend component. The solid black line shows the model’s
baseline scenario for years prior to 2015, while the dashed black line represents the model’s projections
for years after 2015.

Finally, we compare the ratio of bequests to GDP in the model with data. In our

model, bequests are purely accidental, determined by mortality and wealth holdings, with

no extra parameters to influence them. Hendricks (2001) estimate aggregate inheritances

at 1.2–2% of GNP, while Alvaredo et al. (2017) report a slight decline in annual inheritance

flows from 8% of GDP in the 1950s to 7% after 2000 (see their Figure A3). In comparison,

our model predicts bequest flows of 5.5% in the 1950s and 5.2% after 2000, aligning closely

with the 5% target used by Straub (2019).

We also compare our model to insights from microeconomic data, focusing first on

the reliability of the income process. In Figure D.4, we present Lorenz curves generated

by the model and compare them to their empirical counterparts. Each model period

represents five years, and two consecutive periods of model-generated data are combined

to approximate the decades of the 1970s, 1980s, 1990s, 2000s, and 2010s. For the empirical

counterparts, we use PSID data, combining all observations within each decade to increase

sample sizes.

To ensure consistency with the model, we restrict the data sample to individuals

aged 20–65 and exclude observations with negative reported incomes, as such cases are

ruled out by our income process. As shown in Figure D.4, the model replicates the

income distribution in the data quite well. While income shocks and life-cycle patterns

50



Figure D.4: Lorenz curves of income distribution: data vs. model

Note: Labor income data are sourced from the PSID, with population weights applied to the PSID data.
In the model, probability mass serves as weights. Both datasets are restricted to individuals aged 20–65
to align with the model. For clarity, ”superstars” are excluded from both the model and the data.

were estimated from the PSID, other features of the income process, such as the college

premium and college shares, were sourced from external datasets. Thus, the model’s

ability to match the income distributions in the data, despite this not being a direct

calibration target, is particularly reassuring.

Finally, we compare the role of demographics in the Survey of Consumer Finances

(SCF) data to the magnitudes implied by our model.17 Bauluz and Meyer (2024) utilize

the same data to study saving rates, measured as the ratio of assets to income, across

birth cohorts as they age. Their findings indicate that successive birth cohorts tend to

exhibit higher saving rates, which aligns well with the insights generated by our model.

To further evaluate the match between our model and the data, we decompose a

measure of wealth inequality into between-cohort and within-cohort components. While

the Gini coefficient does not allow for such a decomposition, the Generalized Entropy

(GE) index does. GE measures take the following form:

17We use the extended sample provided by Kuhn et al. (2020a).
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GE(ι) = GEb(ι) +GEw(ι)

GEbetween(ι) =
1

(ι2 − ι)

[
J∑

j=1

nj ·
(
aj
a

)ι

− 1

]

GEwithin(ι) =
J∑

j=1

GEj(ι) · nj ·
(
aj
a

)ι

,

where j = 1, ..., J denotes birth cohorts, ι ̸∈ {0, 1}18 is a parameter that governs the

sensitivity of GE measure, a denotes assets (with a representing average assets in the

economy and aj representing average assets of birth cohort j), and nj denotes the share of

birth cohort j. By design, the GE measure allows for decomposition ∆GE(ι) = ∆GEb(ι)+

∆GEw(ι), where the change in overall inequality is the sum of changes in between-cohort

∆GEb(ι) and nd within-cohort ∆GEw(ι) inequality.

Not only is the GE index decomposable, but Lewandowski et al. (2024) also demon-

strate that for ι = 0.5, the GE index closely replicates the dynamics of the Gini coefficient.

Importantly, the main conclusions regarding the decomposition into between- and within-

cohort inequality remain robust to the choice of this parameter.

We decompose changes in wealth inequality in both the model and the data into two

components: the between-cohort component (∆GEb) and the within-cohort component

(∆GEw). The results are presented in Figure D.5, where we display side-by-side bars

for a given period, comparing the data and the model. Gray bars represent the data,

while purple bars represent the model, with darker shades indicating the between-cohort

contribution and lighter shades indicating the within-cohort contribution.

Although these patterns were not explicitly targeted in the calibration, our model

accurately captures the evolving nature of the between- and within-cohort contributions

to changes in wealth inequality. While the magnitudes observed in the data are larger

than those in the model, the patterns generated by the model align remarkably well with

the empirical regularities.

18The GE index for ι = 0 simplifies to the mean-log deviation, and for ι = 1, it becomes a Theil index.
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Figure D.5: The contribution of between-cohort inequality and within-cohort inequality
to change in overall inequality
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Note: We obtain household wealth data, measured as net assets, from the Survey of Consumer Finances
(SCF) extended sample (Kuhn et al., 2020a). Observations with negative assets were excluded from
the SCF sample, as the model imposes a non-negativity constraint on asset accumulation. Population
weights were applied to the SCF data, while probability mass served as weights in the model data. Both
datasets were censored at the 99th percentile for consistency. To measure wealth inequality, we use the
Generalized Entropy (GE) index with ι = 0.5, as it closely replicates the time variation observed in the
Gini coefficient of wealth inequality.

Our decomposition of changes in wealth inequality into between- and within-cohort

components does not directly correspond to the endogenous processes in the model. It

is important to note that rising longevity can influence both components. The between-

cohort component reflects the fact that birth cohorts with differing life expectancies after

retirement accumulate varying levels of wealth by the time they retire. Meanwhile, the

within-cohort component captures the extent to which agents within the same cohort

respond similarly to the old-age saving motive driven by increased longevity.

Additionally, the dynamics of rising longevity involve the exit of older cohorts and

the entry of new ones, a mechanism similar to the entries and exits in top wealth shares

modeled by Gomez (2023). A comprehensive account of demographic processes in the

data is provided by Lewandowski et al. (2024).
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E Online Appendix: results

In the main text, we focus on the impact of demographic factors on wealth inequality, as

this represents our main contribution to the literature, and we examine in detail how they

influence its evolution. For comparison, we also analyze the total effects of other factors,

such as incomes, taxes, and technology. However, due to space limitations, we could not

provide a more in-depth analysis of these factors in the main text. Instead, we offer a

more detailed examination of them here.

E.1 Incomes and evolution of wealth inequality

Between 1950 and 2015, incomes underwent significant changes, characterized by three

key developments. First, the share of college graduates increased, shown in Figure B.1.

This shift can influence income and wealth inequality in either direction: it can reduce

inequality by narrowing the gap in educational attainment and increasing opportunities,

or it can exacerbate inequality, especially, if the benefits of higher education are large.

Second, the college premium rose (see Figure B.3), which likely amplified income and

wealth inequalities by increasing the earnings gap between college graduates and those

without a college education. However, it may also have contributed to boosting the wealth

of the middle class, potentially reducing wealth inequality.

Third, income risk increased for both college graduates and individuals with less than

a college education as shown in Figure B.5. This had two opposing effects: on the one

hand, greater income dispersion led to more dispersed wealth, increasing wealth inequality;

on the other hand, heightened income risk incentivized individuals to save more due to

precautionary motives, particularly among those with fewer assets, which helped reduce

wealth inequality.

The net effect of these three factors on the wealth Gini coefficient is ultimately a

quantitative question. Figure D.4 illustrates how income inequality evolved over time in

both our model and the data. Our model effectively replicates the observed increase in

the income Gini coefficient.

To quantify the effect of income changes on wealth inequality, we conduct a coun-

terfactual scenario in which the college premium and the share of college graduates are

fixed at their 1955 levels, while income risk is held constant at its initial level. Figure E.1,
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constructed in a similar fashion as Figure 3, illustrates the contribution of income changes

to the evolution of the Gini coefficient between 1950 and the years 1975, 2015, and 2050.

Our findings show that income changes have significantly contributed to the increase

in the wealth Gini coefficient. By 1975, the coefficient was 1.2 Gini points higher due

to income changes. This upward trend persisted, with the Gini coefficient rising by 2.9

points by 2015. By 2050, income changes are projected to account for an increase of 3.7

Gini points.

Figure E.1: Impact of evolution of income determinants on wealth inequality (in Gini
points)

Note: The bars depict the differences in the wealth Gini coefficient for a given year between the base-
line scenario and the respective counterfactual scenarios ∆t = Gb

t − Gc
t . A positive number indicates

that a given factor contributed to the increase in the Gini coefficient, while a negative value indicates
a decrease. Counterfactual scenario [S2]IncomeINEQ:1955 was computed by fixing income characteris-
tics at their 1955 levels (see Figures B.1, B.3 and B.5), while keeping all other aspects as in the full
model. Counterfactual scenario [S2a]CollegeShare:1955 was computed by fixing the college share in the
population to its 1955 level (see Figure B.1), while keeping the rest as in the full model. Counterfactual
scenario [S2b]CollegePremium:1955 was computed by fixing the college premium to its 1955 level (see
Figure B.3), with all other factors remaining consistent with the full model. The counterfactual scenario
[S2c]Shocks:Initial is computed by fixing the parameters of the stochastic process governing the idiosyn-
cratic component of income at their initial levels (corresponding to the cohort entering the labor market
in 1955, see Figure B.5 in section B.2), while keeping all other elements consistent with the full model.
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Next, Figure E.1 illustrates how the three aforementioned factors contribute to these

developments.

1. Scenario [S2a]: The increase in the share of college graduates reduces wealth in-

equality by 0.2 Gini points in 1975 but leads to increases of 0.4 and 0.9 points in

2015 and 2050, respectively.

2. Scenario [S2b]: The rise in the college premium slightly reduces wealth inequality

by less than 0.1 Gini points in 1975 but subsequently increases it by 0.5 and 0.8

Gini points in 2015 and 2050, respectively.

3. Scenario [S2c]: The increase in idiosyncratic income risk contributes to a rise in the

wealth Gini coefficient by approximately 1.6 Gini points across all analyzed years.

E.2 Taxes and wealth inequality

The contribution of taxation changes to inequality is a highly debated topic. Here, we

present the predictions of our model. Over the analyzed period, several changes to taxation

policies occurred, as shown in Figure B.7.

First, the average income tax rate increased, which is expected to reduce both income

and wealth inequality. An increase in the progressive average income tax rate lowers

the post-tax income Gini coefficient, which affects the wealth Gini in two ways. On one

hand, individuals with higher incomes tend to save proportionally more, so higher taxes

reduce wealth inequality. On the other hand, reduced income risk decreases precautionary

savings, particularly for lower-income households, which can increase wealth inequality.

Second, the consumption tax rate rose before 1975 and then declined, which can affect

wealth Gini in any directions.

Third, the tax on capital income decreased, which, by encouraging savings, could

theoretically either increase or decrease the wealth Gini coefficient.

Finally, the progressiveness of labor income taxation evolved over the analyzed period.

While it is currently less progressive than in the 1950s, it increased prior to 1975 and

declined afterward. Labor income progressivity has two opposing effects: it reduces income

risk, leading to lower precautionary savings (with stronger responses from households with

fewer assets) and increasing wealth inequality, but it also makes post-tax incomes more

equal, which can reduce disparities in asset holdings.
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Our findings indicate that tax changes have contributed to a decrease in the wealth

Gini coefficient, as shown in scenario [S3]Taxes:1955 in Figure E.2, constructed in a similar

fashion as Figure 3. By 1975, the coefficient was 1 Gini point lower due to these changes.

This downward trend continued, with the Gini coefficient reduced by 1 Gini point by

2015. By 2050, tax changes are projected to result in a decrease of 0.8 Gini points.

Figure E.2: Impact of tax changes to the wealth inequality (in Gini points)

Note: The bars depict the differences in the wealth Gini coefficient for a given year between the baseline
scenario and the respective counterfactual scenarios, as defined by the formula ∆t = Gb

t −Gc
t . A positive

value indicates that a given factor contributed to an increase in the Gini coefficient, while a negative
value indicates a decrease. Counterfactual scenario [S3]Taxes:1955 was computed by fixing all tax rates
to their 1955 levels (see Figure B.7), while keeping all other aspects as in the full model. Counterfactual
scenario [S3a]τL:1955 was computed by fixing only the average labor income tax rate (τℓ) to its 1955 level,
while the rest of the model remained unchanged. Counterfactual scenario [S3b]τC :1955 was computed by
fixing only the consumption tax rate τc to its 1955 level, with all other elements of the model unchanged.
Counterfactual scenario [S3c]τK :1955 was computed by fixing only the capital income tax rate (τK) to
its 1955 level, leaving the rest of the model consistent with the full model. Counterfactual scenario
[S3d]Progression:1955 was computed by fixing the degree of progressiveness in the labor tax (λ) to its
1955 level, while all other aspects remained as in the full model.

Next, Figure E.2 illustrates how the four mentioned above factors contribute to these

developments.
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1. Scenario [S3a]τL:1955: The increase in the average labor income tax rate reduces

wealth inequality by 0.2 Gini points in 1975 and continues to have a mitigating

effect over time. By 2015 and 2050, the Gini coefficient is lower by 0.2 and 0.1 Gini

points, respectively.

2. Scenario [S3b]τC :1955: The increase in consumption tax contributed to a slight

reduction in wealth inequality, decreasing the Gini coefficient by 0.01, 0.3 and 0.2

Gini points in 1975, 2015, and 2050, respectively.

3. Scenario [S3c]τK :1955: The decline in tax on capital income reduces wealth inequal-

ity, lowering the Gini coefficient by 0.7, 0.8, and 0.8 Gini points in 1975, 2015, and

2050, respectively.

4. Scenario [S3d]Progressivity:1955: The initial increase in labor tax progressivity low-

ers the Gini coefficient by 0.1 Gini points in 1975. However, as labor taxes become

less progressive, aftwerward, wealth inequality rises, with the Gini coefficient in-

creasing by 0.3 Gini points by 2015 and projected to rise by 0.4 Gini points by

2050.

E.3 Technology and wealth inequality

Between 1950 and 2015, parameters describing technology underwent significant changes,

characterized by three key developments, see Figure B.6. First, the labor share declined.

Although usually one expects that a decline in the labor share exacerbates wealth in-

equality, under specific conditions - such as broad distribution of capital income, effective

redistributive policies, or increased access to capital for lower-income groups - it could

result in a reduction in inequality.

Second, TFP growth slowed down. Lower TFP growth results in lower interest rates,

which generally tends to reduce wealth inequality, although, theoretically, it could also

increase it under certain conditions. Additionally, slower TFP growth affects the growth

rate of average labor incomes over the life cycle. This can encourage younger individuals

to save more, as saving for old age becomes a greater priority. This effect is likely to

be more pronounced among low-income individuals. Overall, one would expect that a

productivity slowdown reduces wealth inequality, although the possibility of the opposite

effect cannot be entirely ruled out. Ultimately, the impact is a quantitative question.
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Third, the increase in the depreciation rate lowers the interest rate which can affect

wealth inequality through several interconnected mechanisms. On the one hand, wealthy

individuals may see a slowdown in accumulation of their wealth. On the other hand, low

rates of return may discourage savings among individuals with little assets. The overall

impact depends on the specific features of the model, such as how savings, investment,

and income are distributed across agents, as well as the relative importance of capital and

labor income.

Our findings indicate that technological changes have contributed to a decrease in

the wealth Gini coefficient, as shown in scenario [S4]Technology:1955 in Figure E.3, con-

structed in a similar fashion as Figure 3. By 1975, the coefficient was 0.9 Gini points lower

due to these changes. This downward trend persisted, with the Gini coefficient lowered

by 0.9 Gini point by 2015. By 2050, technological changes are projected to result in a

decrease of 1 Gini point.

Next, Figure E.3 illustrates also how the three mentioned above factors contribute to

these developments.

1. Scenario [S4a]LabShare:1955: It examines the decline in the labor share, which de-

creases wealth inequality by 0.9 Gini points in 1975 and continues to have mitigating

effect over time. By 2015 and 2050, the Gini coefficient is reduced by 0.9 and 1.0

Gini points, respectively.

2. Scenario [S4b]TFP:1955: It consider slowdown in TFP growth, which mitigates

wealth inequality. In 1975, it reduces the Gini coefficienty by 0.5 Gini points. This

persist, with the Gini coefficient reductions of 0.9 and 0.5 Gini points in 2015 and

2050, respectively.

3. Scenario [S4c]Depr:1955: It assesses the impact of the decline in deprecation, which

increases wealth inequality. Due to this factor, the Gini coefficient is higher by 0.1,

0.7, and 0.9 Gini points in 1975, 2015, and 2050, respectively.
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Figure E.3: Impact of technological changes on wealth inequality

Note: The bars depict the differences in the wealth Gini coefficient for a given year between the baseline
scenario and the respective counterfactual scenarios, as defined by the formula ∆t = Gb

t −Gc
t . A positive

value indicates that a given factor contributed to an increase in the Gini coefficient, while a negative
value indicates a decrease. Counterfactual scenario [S4]Technology:1955 was computed by fixing the
labor share, the growth rate of technology, and the depreciation rate to their 1955 levels (see Figure
B.6), while keeping all other aspects as in the full model. Counterfactual scenario [S4a]LabShare:1955
was computed by fixing only the labor share (αt) to its 1955 level, while the rest of the model remaining
unchanged. Counterfactual scenario [S4b]TFP:1955 was computed by fixing only the TFP growth rate
(γA

t ) to its 1955 level, with all other elements of the model left unchanged. Counterfactual scenario
[S4c]Depr:1955 was computed by fixing only the depreciation rate dt to its 1955 level, leaving the rest of
the model consistent with the full model.
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F Online Appendix: sensitivity analyses

To assess the robustness of our findings, we conduct a series of tests focusing on our cen-

tral result: the role of rising longevity in shaping wealth inequality. These tests explore

whether the contribution of demographic factors is sensitive to alternative assumptions.

We refer to the simulations presented in the main text as “primary”, which include the

baseline model and counterfactual scenarios. In this section, we add “alternative” simu-

lations, where we modify aspects of the model and/or calibration. In these alternative

simulations, we compare scenarios with longevity evolving according to the data (labeled

“baseline” in figures and descriptions) to counterfactual scenarios where mortality rates

are fixed at 1955 levels (referred to as ‘[S1]Longevity fixed at 1955’).

Specifically, we explore several modifications to the model. First, we examine how

variations in θ, the inverse elasticity of intertemporal substitution, impact our results.

Second, we incorporated persistent differences in interest rates between individuals with

a college education and those with less than a college education. Third, we excluded

discount factor shocks to assess their relevance. Fourth, we applied an alternative spec-

ification for the income process. Fifth, we assume a higher path of technology growth.

Finally, instead of assuming that bequests are distributed equally between all surviving

agents in a cohort, we allow for an unequal distribution.

F.1 An alternative calibration: intertemporal elasticity of substitution

The value of θ in our baseline model reflects relatively low risk aversion and an intertem-

poral elasticity of substitution at the upper end of the estimates from microeconomic

studies. Given the evolving nature of uncertainty over the analyzed period—particularly

with rising income uncertainty—this parameter plays a significant role and could influence

our comparison of demographic factors with the effects of income inequality on wealth

inequality.

To address this concern, we modify the inverse elasticity of intertemporal substitution,

θ, from 1.5 to 3. This parameter also governs relative risk aversion. To assess the robust-

ness of our results, we analyze the contribution of demographic factors in the alternative

scenario with θ = 3, as shown in Figure F.1, and compare it with our primary scenario,

shown in Figure 2, where θ = 1.5.
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The contribution of rising longevity to wealth inequality changes only slightly between

the two scenarios. In 1975, it is 0.79 Gini points in the alternative scenario compared to

0.9 in the primary scenario. Similarly, in 2015, the contributions are nearly identical, with

1.41 Gini points in the alternative scenario and 1.4 in the primary. The difference becomes

somewhat larger by 2050, where the contribution is 1.58 Gini points in the alternative

scenario versus 1.45 in the primary.

Figure F.1: Baseline vs counterfactual scenario of constant longevity (θ = 3)

Note: The black line shows the level of the wealth Gini coefficient in the baseline model with θ = 3. The
violet line illustrates the wealth Gini coefficient from a counterfactual simulation where mortality rates,
used both in calculating the population structure and in the consumer problem, are held constant at their
1955 levels, while all other aspects align with the baseline simulation.

With a higher value of relative risk aversion, the precautionary motive for saving

strengthens, leading all agents to hold larger amounts of assets. As a result, the overall

level of the Gini coefficient is lower and remains more stable over time compared to

the primary calibration. Nevertheless, the role of longevity in shaping wealth inequality

remains consistent with the results from the primary calibration.

F.2 Introducing heterogeneous rates of return

A large body of literature demonstrates that persistently heterogeneous asset returns

are important contributors to wealth inequality (as discussed in the literature review

in the Introduction section). Therefore, we conduct a robustness check incorporating

heterogeneous rates of return based on education level s. Specifically, we assume that
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a gross after-tax return is 1 + r̃s,t + ϵrs,j,t, where r̃s,t = rt + xs. The difference in the

deterministic parts of returns between the two education levels is a constant xH −xL and

we normalize xL = 0. The endogenous variable rt is such that the after-tax net capital

income in the economy equals the net return on savings.

r̃t+1Kt+1 =
∑

s∈{L,H}

J∑
j=1

Ns,j,t

∫
Ω

r̃s,t+1as,j+1,t+1 (zs,j,t) dPs,j,t.

To calibrate this version of the model, we calculate the average value of xH using

SCF data from Kuhn et al. (2020b). The SCF dataset provides information on portfolio

composition (three asset classes: equity and business wealth, real estate, and safe financial

assets) at the household level. Following Bach et al. (2020), we use gross expected rates

of return for these asset classes to calculate the expected rates of return on portfolios: the

value-weighted CRSP index for equity, the Case-Shiller index for real estate, and the US

one-month T-bill for safe financial assets. We proxy expected returns by average returns

over the 1981 to 2016 period. We then calculate average portfolio returns by the education

level of the household head.

Households with heads with college education have annual rates of return that are

higher on average by 62 basis points, compared to households whose heads have less than

college education. We convert the difference to 5-year periods to use as input to our

model. The implied value of xH equals 0.0365.

To assess the robustness of our results, similarly to the approach in the previous

section, we analyze the contribution of demographic factors in this alternative scenario

with persistent interest rate heterogeneity presented in Figure F.2, and compare it with

our primary scenario, shown in Figure 2, which assumes no persistence in interest rate

heterogeneity.

Introducing persistent heterogeneity in interest rates slightly increases the contribution

of rising longevity to wealth inequality. In 1975, the contribution rises to 1.02 Gini points

in the alternative scenario, compared to 0.9 in the primary. By 2015, the contribution

increases to 1.56 Gini points in the alternative scenario and 1.4 in the primary, remaining

close. By 2050, the contribution grows further to 1.57 Gini points in the alternative

scenario, compared to 1.45 in the primary.
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Figure F.2: Baseline vs counterfactual scenario of constant longevity (persistently hetero-
geneous rates of return)

Note: The black line shows the level of the wealth Gini coefficient in the baseline model with heterogeneity
in rates of return. The violet line illustrates the wealth Gini coefficient from a counterfactual simulation
where mortality rates, used both in calculating the population structure and in the consumer problem,
are held constant at their 1955 levels, while all other aspects align with the baseline simulation.

With heterogeneous rates of return, the overall Gini coefficient increases slightly, and

the contribution of demographic factors to wealth inequality rises modestly as well. This

occurs because higher returns for households with college education amplify the effects of

rising longevity on wealth accumulation. Longer lifespans allow individuals with higher

returns to accumulate more wealth over time, exacerbating inequality. Note also that

households with college education experience a larger increase in longevity (see Figure

B.2). While the effect is more pronounced in the long term, the interaction between rising

longevity and return heterogeneity highlights how these factors together contribute to the

growing concentration of wealth.

F.3 Model without discount factor shocks

Discount factor shocks increase asset dispersion among households that hold assets and

serve as a significant source of uncertainty after retirement. They also improve the model’s

alignment with data on the share of households without accumulated wealth. By including

these shocks, the model more accurately captures the level of wealth inequality, as they

effectively represent various phenomena not explicitly modeled. However, the interaction
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between these shocks and the old-age saving motive in the context of rising longevity

remains unclear.

To address this concern, we assume the absence of discount factor shocks. To imple-

ment this, we set δs,j,t = δ̄ for all households and all periods. To examine the robustness

of our findings, as in the previous two sections, we investigate the role of demographic

factors in this alternative scenario, shown in Figure F.3, and compare it to the primary

scenario depicted in Figure 2.

Figure F.3: Baseline vs counterfactual scenario of constant longevity (no discount factor
shocks)

Note: The black line shows the level of the wealth Gini coefficient in the baseline model without discount
factor shocks. The violet line illustrates the wealth Gini coefficient from a counterfactual simulation
where mortality rates, used both in calculating the population structure and in the consumer problem,
are held constant at their 1955 levels, while all other aspects align with the baseline simulation.

The model without discount factor shocks produces Gini coefficient levels lower than

those observed in the data. Additionally, the decline in wealth inequality between 1950

and 1975 is much smaller than in the primary scenario.19 However, the absence of discount

factor shocks significantly amplifies the role of demographics in shaping wealth inequality.

Without changes in longevity, the Gini coefficient is lower by 1.45 points in 1975, compared

to less than 1 point in the primary calibration. Later, rising longevity contributes more

prominently to rising wealth inequality, with their impact reaching 2.9 percentage points

by 2015 and 3.75 points by 2050 (compared to approximately 1.5 points in the primary).

19This version of the model also generates almost no hand-to-mouth agents, in contrast to the more
than 20% observed in the PSID data.
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By removing discount factor shocks, an important source of heterogeneity is eliminated

from the model, which affects the level of the wealth Gini coefficient. However, this

adjustment does not alter our main conclusion regarding the contribution of demographic

factors to wealth inequality. If anything, it strengthens the argument for the critical role

of rising longevity in shaping inequality trends.

F.4 An alternative calibration: income process without “superstars”

The calibration of “superstars” is controversial. In the literature, the authors sometimes

use the “superstar” income state to match wealth inequality. Instead, we match the

share of business income in total household income. This modeling choice can affect the

implications of income inequality for wealth inequality in numerous ways, sometimes with

the opposite directions.

To verify the role of this assumption for our key result, we consider an alternative

calibration of the income process (3). This calibration excludes the separate ”superstars”

state. Instead, we estimate a standard five-state income process. Using PSID data, we

jointly include salaried workers and individuals categorized as ”superstars” in the entire

sample to estimate the deterministic component ζs,j and the parameters of the process

for the idiosyncratic component ωs,j,t. After discretizing the AR(1) process for ωs,j,t, we

do not add the additional state corresponding to business income.

Compared to the primary calibration, this sensitivity analysis results in slightly more

persistent idiosyncratic components for income processes: ϱω,L = 0.982 and ϱω,H = 0.987

(versus 0.980 and 0.985 in the primary calibration).

To evaluate the robustness of our findings, we follow the approach taken in the pre-

vious sections and analyze the role of demographic factors in this alternative scenario

without ”superstars,” shown in Figure F.4, and compare it to the primary scenario with

”superstars,” depicted in Figure 2.

The model without ”superstars” produces the wealth Gini coefficient levels that are

lower than in the primary calibration. However, the absence of ”superstars” slightly am-

plifies the role of demographic factors in shaping wealth inequality. Without changes in

longevity, the Gini coefficient declines by 0.87 Gini points in 1975, compared to 0.9 in

the primary calibration - almost identical. Later, however, rising longevity contributes

more substantially to rising wealth inequality, with their impact reaching 1.57 Gini points
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Figure F.4: Baseline vs counterfactual scenario of constant longevity (no “superstars”)

Note: The black line shows the level of the wealth Gini coefficient in the baseline model without the
extra income state. The violet line illustrates the wealth Gini coefficient from a counterfactual simulation
where mortality rates, used both in calculating the population structure and in the consumer problem,
are held constant at their 1955 levels, while all other aspects align with the baseline simulation.

by 2015 and 1.77 points by 2050 (compared to approximately 1.5 points in the primary

calibration).

In a model without ”superstars”, an important source of heterogeneity in our model,

income inequality, becomes less pronounced. This shift lowers the contribution of within-

cohort inequality to overall inequality, making the impact of between-cohort inequality

more significant. Consequently, the argument for the critical role of rising longevity in

driving inequality trends is further strengthened.

F.5 An alternative calibration: higher productivity growth rate

The debate about future evolution of TFP growth is unsettled. In the main text, we

follow Fernald (2016). To study the sensitivity of our results to this assumption. We

explore an alternative path of projected total factor productivity (TFP). This scenario

could represent, for instance, the widespread adoption of AI (Brynjolfsson et al., 2021).

Instead of assuming that the annual TFP growth rate stabilizes at 0.6% as in our primary

scenario, we consider an alternative where the growth rate rebounds to over 1% annually.

For this purpose, we use a projected path from the January 2025 vintage of the CBO

Long-Term Economic Projections (Congressional Budget Office, 2025).
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Note that due to differences in how the TFP is calculated in PWT 10 (our primary data

source) and in the CBO’s projections. These two measures are not directly comparable.

For example, Shackleton (2013) reports that the average annual TFP growth rate in

1960-2010 in the U.S. was approximately 1.8%. The corresponding number in PWT 10

is 0.64%. We use the path from the CBO as an example of a higher trajectory, as shown

in Figure F.5. The assumed terminal TFP growth rate is higher than in any period since

the 1960s.

Figure F.5: Primary and alternative TFP growth rate
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Note: Data are taken from Penn World Tables 10 (variable rtfpna). The data was adjusted to five-year
periods. We also remove the cyclical component by applying Hodrick-Prescott filter. The values for
each period are obtained as five-year averages of the trend component. The black dashed lines is the
extrapolated path we use in the baseline calibration. The blue dashed line is the alternative projected
path from Congressional Budget Office (2025) we use in the sensitivity check.

Again, to evaluate the robustness of our results, we examine the contribution of de-

mographic factors in this alternative scenario, shown in Figure F.6, and compare it to the

primary scenario depicted in Figure 2. Figure F.6 serves as a counterpart to Figure 2 in

the main text.

The alternative projection of productivity growth somewhat lowers the contribution of

rising longevity to wealth inequality. In 1975, the contribution is 0.69 Gini points in the

alternative scenario, compared to 0.9 in the primary. By 2015, the contribution increases

to 1.02 Gini points in the alternative scenario versus 1.4 in the primary. By 2050, the

contribution rises further to 1.08 Gini points in the alternative scenario, compared to 1.45

in the primary.

Steeper TFP growth contributes to an increase in wealth inequality. Between 1975
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and 2050, the Gini coefficient grows by 5.83 points in the alternative scenario compared

to 5.62 points in the primary. This result is consistent with findings that slower TFP

growth reduces wealth inequality, as shown in Figure E.3.

TFP growth influences wealth inequality through multiple channels. Higher TFP

growth leads to higher interest rates, which tend to amplify wealth inequality, although

theoretically it is not impossible that they reduces it. TFP growth also affects the tra-

jectory of income over the life cycle: with steeper income growth, individuals have less

incentive to save early in life, and this effect is most likely particularly pronounced among

low-income individuals, which tends to lead to increse in wealth inequality.

In general, higher projected TFP growth should increase wealth inequality, as it is in

our simulations. Additionally, with faster income growth, old-age savings become a less

important motive for asset accumulation. As a result, the contribution of demographic

factors to wealth inequality diminishes under scenarios of higher TFP growth.

Qualitatively, the role of demographic factors in shaping wealth inequality remains

consistent with our primary analysis. Quantitatively, however, its impact is somewhat

smaller. Compared to the primary calibration, the effect of increased longevity is reduced

by approximately 25%.

Figure F.6: Baseline vs counterfactual scenario of constant longevity (TFP growth rate)

Note: The black line shows the level of the wealth Gini coefficient in the baseline model with alternative
future TFP growth rate path. The violet line illustrates the wealth Gini coefficient from a counterfactual
simulation where mortality rates, used both in calculating the population structure and in the consumer
problem, are held constant at their 1955 levels, while all other aspects align with the baseline simulation.
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F.6 An alternative calibration: unequal distribution of bequests

Halvorsen et al. (2024) analyze the wealth of the top 0.1% at age 50 in Norway and find

that high initial wealth among top wealth owners accounts for approximately one-third

of the wealth gap between them and median households. In contrast, using the same

data, Black et al. (2024) argue that bequests are almost irrelevant. The discrepancies

between these studies, particularly due to differences in addressing the underreporting of

inheritances, underscore the complexity of this issue.

The focus of our paper is on changes in wealth inequality within the “bottom 99%”

in the U.S., specifically the roles of rising old-age longevity and income inequality in

driving these changes. Evidence on the role of inheritances in the U.S. is mixed. For

example, Hendricks (2001) report that while bequests are not evenly distributed—only

5% of households inherit more than 5% of lifetime earnings, and recipients of large bequests

hold 2.5 times more wealth at retirement—inheritances explain only a small portion of this

wealth gap. Approximately 50% of households in the top 1% of the wealth distribution

in the SCF data did not receive any inheritance. Wolff (2002) and Wolff and Gittleman

(2014) argue that bequests decrease wealth inequality in the SCF data, while Boserup et al.

(2016) find that in Denmark, bequests reduce the top 1% wealth share but increase overall

wealth inequality. Overall, the literature indicates that while bequests may significantly

impact the top 1%, their influence on the “bottom 99%” appears limited and remains a

topic of ongoing debate.

Given the ongoing debate in the literature, we examine whether an uneven distribution

of bequests would affect our results. In the primary scenario, bequests are redistributed

uniformly among individuals in the same cohort and with the same education level. In

the alternative scenario, bequests are allocated to individuals with the same education

level aged j = 6 (corresponding to ages 45–49). The distribution is as follows: 70% of

individuals receive no bequests, 20% receive 50% of the total, and the remaining 10%

receive the other 50%.

Following the approach from previous sections, we evaluate the robustness of our re-

sults by examining the contribution of demographic factors under this alternative scenario.

The results are presented in Figure F.7 and compared to the primary scenario shown in

Figure 2 in the main text. Figure F.7 serves as a direct counterpart to Figure 2.
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Figure F.7: Baseline vs counterfactual scenario of constant longevity (unequal bequest
distribution)

Note: The black line shows the level of the wealth Gini coefficient in the baseline model with an unequal
distribution of bequests. The violet line illustrates the wealth Gini coefficient from a counterfactual
simulation where mortality rates, used both in calculating the population structure and in the consumer
problem, are held constant at their 1955 levels, while all other aspects align with the baseline simulation.

With the alternative bequest distribution the contribution of demographic factors to

wealth inequality becomes somewhat stronger. In 1975, the contribution is 0.98 Gini

points in the alternative scenario, compared to 0.9 in the primary. By 2015, the contri-

bution increases to 1.66 Gini points in the alternative scenario versus 1.4 in the primary.

By 2050, the contribution rises further to 1.76 Gini points in the alternative scenario,

compared to 1.45 in the primary.

These results indicate that with a more unequal distribution of bequests, the impact of

demographic factors on wealth inequality becomes slightly more pronounced. This occurs

because, with a low probability of receiving a bequest, individuals respond more strongly

to increases in longevity. Consequently, the reinforcing effect of demographic transitions

on inequality is amplified.
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